Edit model card

korean-aihub-learning-3

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2854
  • Wer: 0.7921

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.99 35 45.5713 1.0
No log 1.99 70 24.4376 1.0
35.4145 2.99 105 18.3030 1.0
35.4145 3.99 140 12.6702 1.0
35.4145 4.99 175 7.4939 1.0
11.687 5.99 210 4.9592 1.0
11.687 6.99 245 4.6777 1.0
11.687 7.99 280 4.6597 1.0
4.8003 8.99 315 4.6777 1.0
4.8003 9.99 350 4.7003 1.0
4.8003 10.99 385 4.6129 1.0
4.6383 11.99 420 4.6209 1.0
4.6383 12.99 455 4.6035 1.0
4.6383 13.99 490 4.6166 1.0
4.577 14.99 525 4.6026 1.0
4.577 15.99 560 4.5337 1.0
4.577 16.99 595 4.5284 1.0
4.5124 17.99 630 4.5710 1.0
4.5124 18.99 665 4.5223 1.0
4.3818 19.99 700 4.4472 1.0
4.3818 20.99 735 4.4272 0.9977
4.3818 21.99 770 4.4160 0.9977
4.2796 22.99 805 4.3741 0.9988
4.2796 23.99 840 4.3087 1.0
4.2796 24.99 875 4.2336 1.0
4.0489 25.99 910 4.1352 0.9988
4.0489 26.99 945 4.0669 1.0
4.0489 27.99 980 3.8551 0.9988
3.6122 28.99 1015 3.6699 0.9919
3.6122 29.99 1050 3.4580 0.9781
3.6122 30.99 1085 3.1899 0.9434
2.8886 31.99 1120 3.0746 0.9550
2.8886 32.99 1155 2.8143 0.9353
2.8886 33.99 1190 2.7004 0.9122
2.0277 34.99 1225 2.5284 0.9076
2.0277 35.99 1260 2.4677 0.8972
2.0277 36.99 1295 2.3426 0.8568
1.2486 37.99 1330 2.2456 0.8822
1.2486 38.99 1365 2.3250 0.9238
0.7572 39.99 1400 2.2832 0.8557
0.7572 40.99 1435 2.2671 0.8406
0.7572 41.99 1470 2.3070 0.8857
0.4768 42.99 1505 2.2138 0.8476
0.4768 43.99 1540 2.2034 0.8799
0.4768 44.99 1575 2.2215 0.8487
0.3362 45.99 1610 2.3416 0.8834
0.3362 46.99 1645 2.3452 0.8383
0.3362 47.99 1680 2.2449 0.8360
0.257 48.99 1715 2.2249 0.8199
0.257 49.99 1750 2.3455 0.8106
0.257 50.99 1785 2.2537 0.8233
0.2116 51.99 1820 2.2501 0.8025
0.2116 52.99 1855 2.3180 0.8649
0.2116 53.99 1890 2.1855 0.8106
0.1787 54.99 1925 2.2140 0.8014
0.1787 55.99 1960 2.3140 0.8453
0.1787 56.99 1995 2.2140 0.8025
0.1498 57.99 2030 2.3381 0.8314
0.1498 58.99 2065 2.2591 0.8256
0.1372 59.99 2100 2.2538 0.7979
0.1372 60.99 2135 2.2052 0.7933
0.1372 61.99 2170 2.2370 0.8233
0.129 62.99 2205 2.2331 0.7898
0.129 63.99 2240 2.3022 0.8002
0.129 64.99 2275 2.3514 0.7956
0.1075 65.99 2310 2.3303 0.8279
0.1075 66.99 2345 2.2747 0.8025
0.1075 67.99 2380 2.2899 0.8152
0.0979 68.99 2415 2.3299 0.8164
0.0979 69.99 2450 2.1819 0.7945
0.0979 70.99 2485 2.2141 0.8222
0.0973 71.99 2520 2.3683 0.8395
0.0973 72.99 2555 2.2235 0.8199
0.0973 73.99 2590 2.2474 0.8048
0.0814 74.99 2625 2.3116 0.7968
0.0814 75.99 2660 2.2494 0.7945
0.0814 76.99 2695 2.2441 0.7968
0.0745 77.99 2730 2.2489 0.7864
0.0745 78.99 2765 2.2568 0.7921
0.0741 79.99 2800 2.2598 0.7875
0.0741 80.99 2835 2.3131 0.8002
0.0741 81.99 2870 2.2719 0.7898
0.0662 82.99 2905 2.2901 0.7875
0.0662 83.99 2940 2.3092 0.7979
0.0662 84.99 2975 2.3361 0.8048
0.0556 85.99 3010 2.3308 0.8152
0.0556 86.99 3045 2.3106 0.8164
0.0556 87.99 3080 2.3363 0.8002
0.0504 88.99 3115 2.3588 0.7910
0.0504 89.99 3150 2.3528 0.7956
0.0504 90.99 3185 2.3201 0.7794
0.0496 91.99 3220 2.3386 0.7991
0.0496 92.99 3255 2.3423 0.7956
0.0496 93.99 3290 2.3312 0.7956
0.0468 94.99 3325 2.3362 0.7968
0.0468 95.99 3360 2.2962 0.7887
0.0468 96.99 3395 2.2864 0.7841
0.0475 97.99 3430 2.2870 0.7898
0.0475 98.99 3465 2.2866 0.7898
0.0411 99.99 3500 2.2854 0.7921

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.