|
--- |
|
tags: |
|
- Instance Segmentation |
|
- Vision Transformers |
|
- CNN |
|
- Optical Space Missions |
|
- Artefact Mapping |
|
- ESA |
|
|
|
pretty_name: XAMI-model |
|
license: mit |
|
datasets: |
|
- iulia-elisa/XAMI-dataset |
|
--- |
|
|
|
<div align="center"> |
|
<h1> XAMI-model: XMM-Newton optical Artefact Mapping for astronomical Instance segmentation </h1> |
|
</div> |
|
|
|
🚀 Check the **[XAMI model](https://github.com/ESA-Datalabs/XAMI-model)** on Github. |
|
|
|
<!-- ## Model Checkpoints |
|
|
|
| Model Name | Link | |
|
| :---: | :---: | |
|
| YOLOv8 |[yolov8_segm](https://huggingface.co./iulia-elisa/XAMI/blob/main/yolo_weights/best.pt) | |
|
| MobileSAM |[sam_vit](https://huggingface.co./iulia-elisa/XAMI/blob/main/sam_weights/sam_0_best.pth) | |
|
| XAMI |[xami_model](https://huggingface.co./iulia-elisa/XAMI/blob/main/yolo_sam_final.pth) | |
|
--> |
|
## 💫 Introduction |
|
The code uses images from the XAMI dataset (available on [Github](https://github.com/ESA-Datalabs/XAMI-dataset) and [HuggingFace🤗](https://huggingface.co./datasets/iulia-elisa/XAMI-dataset)). The images represent observations from the XMM-Newton's Opical Monitor (XMM-OM). Information about the XMM-OM can be found here: |
|
|
|
- XMM-OM User's Handbook: https://www.mssl.ucl.ac.uk/www_xmm/ukos/onlines/uhb/XMM_UHB/node1.html. |
|
- Technical details: https://www.cosmos.esa.int/web/xmm-newton/technical-details-om. |
|
- The article https://ui.adsabs.harvard.edu/abs/2001A%26A...365L..36M/abstract. |
|
|
|
## 📂 Cloning the repository |
|
|
|
```bash |
|
git clone https://github.com/ESA-Datalabs/XAMI-model.git |
|
cd XAMI-model |
|
|
|
# creating the environment |
|
conda env create -f environment.yaml |
|
conda activate xami_model_env |
|
``` |
|
|
|
## 📊 Downloading the dataset and model checkpoints from HuggingFace🤗 |
|
|
|
Check [dataset_and_model.ipynb](https://github.com/ESA-Datalabs/XAMI-model/blob/main/dataset_and_model.ipynb) for downloading the dataset and model weights. |
|
|
|
The dataset is splited into train and validation categories and contains annotated artefacts in COCO format for Instance Segmentation. We use multilabel Stratified K-fold (k=4) to balance class distributions across splits. We choose to work with a single dataset splits version (out of 4) but also provide means to work with all 4 versions. |
|
|
|
To better understand our dataset structure, please check the [Dataset-Structure.md](https://github.com/ESA-Datalabs/XAMI-dataset/blob/main/Datasets-Structure.md) for more details. We provide the following dataset formats: COCO format for Instance Segmentation (commonly used by [Detectron2](https://github.com/facebookresearch/detectron2) models) and YOLOv8-Seg format used by [ultralytics](https://github.com/ultralytics/ultralytics). |
|
|
|
<!-- 1. **Downloading** the dataset archive from [HuggingFace](https://huggingface.co./datasets/iulia-elisa/XAMI-dataset/blob/main/xami_dataset.zip). |
|
|
|
```bash |
|
DEST_DIR='.' # destination folder for the dataset (should usually be set to current directory) |
|
|
|
huggingface-cli download iulia-elisa/XAMI-dataset xami_dataset.zip --repo-type dataset --local-dir "$DEST_DIR" && unzip "$DEST_DIR/xami_dataset.zip" -d "$DEST_DIR" && rm "$DEST_DIR/xami_dataset.zip" |
|
``` --> |
|
|
|
## 💡 Model Inference |
|
|
|
After cloning the repository and setting up the environment, use the following Python code for model loading and inference: |
|
|
|
```python |
|
import sys |
|
from inference.xami_inference import Xami |
|
|
|
detr_checkpoint = './train/weights/yolo_weights/yolov8_detect_300e_best.pt' |
|
sam_checkpoint = './train/weights/sam_weights/sam_0_best.pth' |
|
|
|
# the SAM checkpoint and model_type (vit_h, vit_t, etc.) must be compatible |
|
detr_sam_pipeline = Xami( |
|
device='cuda:0', |
|
detr_checkpoint=detr_checkpoint, #YOLO(detr_checkpoint) |
|
sam_checkpoint=sam_checkpoint, |
|
model_type='vit_t', |
|
use_detr_masks=True) |
|
|
|
# prediction example |
|
masks = yolo_sam_pipeline.run_predict( |
|
'./example_images/S0743200101_V.jpg', |
|
yolo_conf=0.2, |
|
show_masks=True) |
|
``` |
|
|
|
## 🚀 Training the model |
|
|
|
Check the training [README.md](https://github.com/ESA-Datalabs/XAMI-model/blob/main/train/README.md). |
|
|
|
## © Licence |
|
|
|
This project is licensed under [MIT license](LICENSE). |