|
--- |
|
license: llama3.2 |
|
language: |
|
- zh |
|
- en |
|
- it |
|
- de |
|
- fr |
|
- ja |
|
- ko |
|
base_model: lianghsun/Llama-3.2-Taiwan-3B-Instruct |
|
datasets: |
|
- lianghsun/tw-emergency-medicine-bench |
|
- lianghsun/tw-legal-nlp |
|
- lianghsun/tw-legal-synthetic-qa |
|
- lianghsun/tw-law-article-qa |
|
- lianghsun/tw-judgment-qa |
|
- lianghsun/tw-judgment-gist-chat |
|
- lianghsun/tw-bar-examination-2020-chat |
|
- lianghsun/tw-structured-law-article |
|
- lianghsun/tw-judgment-gist-chat |
|
- lianghsun/tw-contract-review-chat |
|
- lianghsun/reasoning-base-20k-chat |
|
- lianghsun/vulnerability-mitigation-qa-zh_tw |
|
- lianghsun/tw-instruct |
|
- rombodawg/Everything_Instruct_Multilingual |
|
- xzuyn/manythings-translations-alpaca |
|
- neural-bridge/rag-dataset-12000 |
|
- minyichen/glaive_toolcall_zh_tw |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- Taiwan |
|
- ROC |
|
- zh-tw |
|
- instruct |
|
- chat |
|
- llama3.2 |
|
- SLM |
|
- llama-cpp |
|
- gguf-my-repo |
|
widget: |
|
- text: 中華民國憲法第一條 |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Llama-3.2-Taiwan-3B-Instruct |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Single Choice Question |
|
dataset: |
|
name: tw-legal-benchmark-v1 |
|
type: lianghsun/tw-legal-benchmark-v1 |
|
metrics: |
|
- type: accuracy |
|
value: 31.1 |
|
name: single choice |
|
- task: |
|
type: text-generation |
|
name: Single Choice Question |
|
dataset: |
|
name: (Society) Formosa Taiwan Knowledge Bench |
|
type: lianghsun/Formosa-bench |
|
config: society |
|
split: test |
|
revision: v2024.11.27 |
|
metrics: |
|
- type: accuracy |
|
value: 60.42 |
|
name: single choice |
|
- task: |
|
type: text-generation |
|
name: Single Choice Question |
|
dataset: |
|
name: (Governmnt) Formosa Taiwan Knowledge Bench |
|
type: lianghsun/Formosa-bench |
|
config: governmnt |
|
split: test |
|
revision: v2024.11.27 |
|
metrics: |
|
- type: accuracy |
|
value: 44.25 |
|
name: single choice |
|
- task: |
|
type: text-generation |
|
name: Single Choice Question |
|
dataset: |
|
name: (Geography) Formosa Taiwan Knowledge Bench |
|
type: lianghsun/Formosa-bench |
|
config: geography |
|
split: test |
|
revision: v2024.11.27 |
|
metrics: |
|
- type: accuracy |
|
value: 47.54 |
|
name: single choice |
|
- task: |
|
type: text-generation |
|
name: Single Choice Question |
|
dataset: |
|
name: (History) Formosa Taiwan Knowledge Bench |
|
type: lianghsun/Formosa-bench |
|
config: history |
|
split: test |
|
revision: v2024.11.27 |
|
metrics: |
|
- type: accuracy |
|
value: 60 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (geography_of_taiwan) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: geography_of_taiwan |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 36.2 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (dentistry) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: dentistry |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 33.83 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (technical) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: technical |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 35.07 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (statistics_and_machine_learning) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: statistics_and_machine_learning |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 28.57 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (clinical_psychology) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: clinical_psychology |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 29.6 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (tve_design) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: tve_design |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 38.54 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (three_principles_of_people) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: three_principles_of_people |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 48.2 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (introduction_to_law) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: introduction_to_law |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 29.96 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (linear_algebra) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: linear_algebra |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 21.43 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (agriculture) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: agriculture |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 24.5 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (jce_humanities) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: jce_humanities |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 38.89 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (music) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: music |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.9 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (secondary_physics) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: secondary_physics |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 33.04 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (physics) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: physics |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.84 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (advance_chemistry) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: advance_chemistry |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.64 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (junior_science_exam) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: junior_science_exam |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 30.05 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (veterinary_pathology) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: veterinary_pathology |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.09 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (financial_analysis) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: financial_analysis |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.13 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (national_protection) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: national_protection |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 42.65 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (macroeconomics) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: macroeconomics |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 26.76 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (politic_science) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: politic_science |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.44 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (ttqav2) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: ttqav2 |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 61.06 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (junior_chinese_exam) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: junior_chinese_exam |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 30.86 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (traditional_chinese_medicine_clinical_medicine) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: traditional_chinese_medicine_clinical_medicine |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.9 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (junior_math_exam) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: junior_math_exam |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 21.71 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (auditing) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: auditing |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 21.82 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (anti_money_laundering) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: anti_money_laundering |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 37.31 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (pharmacology) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: pharmacology |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 30.68 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (trust_practice) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: trust_practice |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 28.18 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (tve_mathematics) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: tve_mathematics |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 18.67 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (human_behavior) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: human_behavior |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 32.04 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (pharmacy) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: pharmacy |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 22.76 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (tve_chinese_language) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: tve_chinese_language |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 36.65 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (optometry) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: optometry |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.11 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (physical_education) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: physical_education |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 30.73 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (organic_chemistry) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: organic_chemistry |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 35.78 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (tve_natural_sciences) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: tve_natural_sciences |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 33.73 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (education) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: education |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 37.9 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (mechanical) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: mechanical |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 42.37 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (taiwanese_hokkien) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: taiwanese_hokkien |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 14.73 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (nautical_science) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: nautical_science |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 30.49 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (business_management) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: business_management |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 39.57 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (logic_reasoning) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: logic_reasoning |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.34 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (marketing_management) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: marketing_management |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 39.78 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (economics) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: economics |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.95 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (basic_medical_science) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: basic_medical_science |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 28.41 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (occupational_therapy_for_psychological_disorders) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: occupational_therapy_for_psychological_disorders |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 35.73 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (general_principles_of_law) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: general_principles_of_law |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 31.13 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (junior_chemistry) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: junior_chemistry |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 24.88 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (veterinary_pharmacology) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: veterinary_pharmacology |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 36.3 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (educational_psychology) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: educational_psychology |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 33.52 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (finance_banking) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: finance_banking |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 32.59 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (official_document_management) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: official_document_management |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 32.43 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (fire_science) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: fire_science |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 30.65 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (junior_social_studies) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: junior_social_studies |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 47.62 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (accounting) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: accounting |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 20.94 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (engineering_math) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: engineering_math |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.18 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (education_(profession_level)) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: education_(profession_level) |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 24.07 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (chinese_language_and_literature) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: chinese_language_and_literature |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.64 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (management_accounting) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: management_accounting |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 24.19 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (culinary_skills) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: culinary_skills |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 39.38 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (administrative_law) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: administrative_law |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 25.71 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (insurance_studies) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: insurance_studies |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 33.42 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (real_estate) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: real_estate |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 22.83 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (computer_science) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: computer_science |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 31.61 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (taxation) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: taxation |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 27.47 |
|
name: single choice |
|
- task: |
|
type: question-answering |
|
name: Single Choice Question |
|
dataset: |
|
name: (trade) tmmlu++ |
|
type: ikala/tmmluplus |
|
config: trade |
|
split: test |
|
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c |
|
metrics: |
|
- type: accuracy |
|
value: 20.32 |
|
name: single choice |
|
--- |
|
|
|
# itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`lianghsun/Llama-3.2-Taiwan-3B-Instruct`](https://huggingface.co./lianghsun/Llama-3.2-Taiwan-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co./lianghsun/Llama-3.2-Taiwan-3B-Instruct) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -c 2048 |
|
``` |
|
|