metadata
license: cc-by-4.0
datasets:
- issai/kazsandra
language:
- kk
metrics:
- f1
pipeline_tag: text-classification
tags:
- polarity
- polarity classification
- sentiment analysis
widget:
- text: Түк ұнаған жоқ.
example_title: Negative
Polarity Classification Model for Kazakh
This is a RemBERT model fine-tuned for sentiment analysis on product reviews in Kazakh. It predicts the polarity of a review as positive or negative. The model was fine-tuned on KazSAnDRA.
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
RemBERT | 0.89 | 0.81 | 0.82 | 0.81 |
How to use
You can use this model with the Transformers pipeline for text classification.
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from transformers import TextClassificationPipeline
model = AutoModelForSequenceClassification.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh")
tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh")
pipe = TextClassificationPipeline(model = model, tokenizer = tokenizer)
reviews = ["Бұл бейнефильм маған түк ұнамады.", "Осы кітап қызық сияқты."]
for review in reviews:
print(pipe(review))