SDPrompt-RetNet-v2-beta
This model is a pretrained RetNet model trained from scratch using https://github.com/syncdoth/RetNet.
It achieves the following results on the evaluation set:
- Loss: 0.5923
Usage
pip install transformers safetensors
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
MODEL_NAME = "isek-ai/SDPrompt-RetNet-v2-beta"
DEVICE = "cuda"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model= AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16, # or torch.bfloat16
trust_remote_code=True,
).to(DEVICE)
model.eval()
streamer = TextStreamer(tokenizer)
prompt = "1girl"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
_ = model.generate(
inputs["input_ids"],
max_new_tokens=256,
do_sample=True,
top_p=0.9,
top_k=20,
temperature=0.9,
streamer=streamer,
)
# 1girl, :<, bag, black hair, blurry, bokeh, cloud, depth of field, from side, long sleeves, night, outdoors, pleated skirt, power lines, purple eyes, road, scenery, shoes, shoulder bag,gasm, sidelocks, sign, skirt,let's drawsaurus, skylight smile, sneakers, standing, star (sky), sweater, town, traffic cone, utility pole, vending machine, wide-eyed, window, wooden box, yellow skirt,ization, zettai ryouiki, zoom layer, white footwear, zipper, zipper pull tab, zipperland sheet, zombie pose, ladder, leaning back, leg up, looking to the side,let, miniskirt, motion blur, musical note, open mouth, part
Model description
This model is trained with only Danbooru tags to generate prompts for image generation models.
Training data
Dataset filtering
TODO
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.975 | 0.07 | 500 | 1.0005 |
0.7549 | 0.13 | 1000 | 0.7604 |
0.6923 | 0.2 | 1500 | 0.7090 |
0.6753 | 0.26 | 2000 | 0.6778 |
0.6591 | 0.33 | 2500 | 0.6568 |
0.6337 | 0.39 | 3000 | 0.6429 |
0.6288 | 0.46 | 3500 | 0.6319 |
0.624 | 0.53 | 4000 | 0.6218 |
0.62 | 0.59 | 4500 | 0.6172 |
0.603 | 0.66 | 5000 | 0.6090 |
0.5931 | 0.72 | 5500 | 0.6032 |
0.5957 | 0.79 | 6000 | 0.5986 |
0.5972 | 0.85 | 6500 | 0.5948 |
0.5928 | 0.92 | 7000 | 0.5926 |
0.5904 | 0.98 | 7500 | 0.5923 |
Framework versions
- Transformers 4.36.1
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 48
Inference API (serverless) does not yet support model repos that contain custom code.