Edit model card

SDPrompt-RetNet-v2-beta

This model is a pretrained RetNet model trained from scratch using https://github.com/syncdoth/RetNet.

It achieves the following results on the evaluation set:

  • Loss: 0.5923

Usage

pip install transformers safetensors
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

MODEL_NAME = "isek-ai/SDPrompt-RetNet-v2-beta"
DEVICE = "cuda"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model= AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    torch_dtype=torch.float16, # or torch.bfloat16
    trust_remote_code=True,
).to(DEVICE)
model.eval()
streamer = TextStreamer(tokenizer)

prompt = "1girl"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
_ = model.generate(
    inputs["input_ids"],
    max_new_tokens=256,
    do_sample=True,
    top_p=0.9,
    top_k=20,
    temperature=0.9,
    streamer=streamer,
)
# 1girl, :<, bag, black hair, blurry, bokeh, cloud, depth of field, from side, long sleeves, night, outdoors, pleated skirt, power lines, purple eyes, road, scenery, shoes, shoulder bag,gasm, sidelocks, sign, skirt,let's drawsaurus, skylight smile, sneakers, standing, star (sky), sweater, town, traffic cone, utility pole, vending machine, wide-eyed, window, wooden box, yellow skirt,ization, zettai ryouiki, zoom layer, white footwear, zipper, zipper pull tab, zipperland sheet, zombie pose, ladder, leaning back, leg up, looking to the side,let, miniskirt, motion blur, musical note, open mouth, part

Model description

This model is trained with only Danbooru tags to generate prompts for image generation models.

Training data

Dataset filtering

TODO

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.975 0.07 500 1.0005
0.7549 0.13 1000 0.7604
0.6923 0.2 1500 0.7090
0.6753 0.26 2000 0.6778
0.6591 0.33 2500 0.6568
0.6337 0.39 3000 0.6429
0.6288 0.46 3500 0.6319
0.624 0.53 4000 0.6218
0.62 0.59 4500 0.6172
0.603 0.66 5000 0.6090
0.5931 0.72 5500 0.6032
0.5957 0.79 6000 0.5986
0.5972 0.85 6500 0.5948
0.5928 0.92 7000 0.5926
0.5904 0.98 7500 0.5923

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
48
Safetensors
Model size
255M params
Tensor type
F32
·
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train isek-ai/SDPrompt-RetNet-v2-beta