irenepap's picture
biobert-base-pubmed-multilabel
d02d0b3 verified
metadata
base_model: dmis-lab/biobert-v1.1
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: biobert-base-pubmed-multilabel
    results: []

biobert-base-pubmed-multilabel

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2677
  • Precision: 0.9044
  • Recall: 0.8528
  • F1: 0.8778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.3373 0.2 500 0.2859 0.9093 0.8006 0.8515
0.2781 0.4 1000 0.2748 0.8972 0.8388 0.8670
0.269 0.6 1500 0.2639 0.9026 0.8405 0.8705
0.2598 0.81 2000 0.2610 0.9037 0.8435 0.8726
0.2543 1.01 2500 0.2559 0.9052 0.8494 0.8764
0.2191 1.21 3000 0.2554 0.9091 0.8437 0.8752
0.2217 1.41 3500 0.2620 0.8917 0.8676 0.8795
0.2232 1.61 4000 0.2529 0.9070 0.8470 0.8759
0.2256 1.81 4500 0.2567 0.9231 0.8176 0.8671
0.2191 2.02 5000 0.2591 0.8936 0.8731 0.8832
0.1744 2.22 5500 0.2674 0.8978 0.8631 0.8801
0.1745 2.42 6000 0.2736 0.8974 0.8566 0.8766
0.1749 2.62 6500 0.2677 0.9044 0.8528 0.8778

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2