|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
base_model: bert-base-uncased |
|
model-index: |
|
- name: clinical_trial_stop_reasons_custom |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# clinical_trial_stop_reasons_custom |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1448 |
|
- Accuracy Thresh: 0.9570 |
|
- F1 Micro: 0.5300 |
|
- F1 Macro: 0.1254 |
|
- Confusion Matrix: [[5940 15] |
|
[ 270 150]] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy Thresh | F1 Micro | F1 Macro | Confusion Matrix | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:--------:|:--------:|:--------------------------:| |
|
| No log | 1.0 | 106 | 0.2812 | 0.8328 | 0.0 | 0.0 | [[5955 0] |
|
[ 420 0]] | |
|
| No log | 2.0 | 212 | 0.2189 | 0.9382 | 0.0 | 0.0 | [[5955 0] |
|
[ 420 0]] | |
|
| No log | 3.0 | 318 | 0.1840 | 0.9489 | 0.0 | 0.0 | [[5955 0] |
|
[ 420 0]] | |
|
| No log | 4.0 | 424 | 0.1638 | 0.9485 | 0.4940 | 0.0989 | [[5943 12] |
|
[ 288 132]] | |
|
| 0.239 | 5.0 | 530 | 0.1526 | 0.9533 | 0.5060 | 0.1018 | [[5943 12] |
|
[ 277 143]] | |
|
| 0.239 | 6.0 | 636 | 0.1467 | 0.9564 | 0.5077 | 0.1020 | [[5938 17] |
|
[ 275 145]] | |
|
| 0.239 | 7.0 | 742 | 0.1448 | 0.9570 | 0.5300 | 0.1254 | [[5940 15] |
|
[ 270 150]] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.12.1+cu102 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|