metadata
{}
Led Monitor Electronic Scoreboard Rental
Description: Automatically classify and assign rental status to led monitors and electronic scoreboards to manage inventory and optimize delivery processes.
How to Use
Here is how to use this model to classify text into different categories:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "interneuronai/led_monitor_electronic_scoreboard_rental_bert"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
return predictions.item()
text = "Your text here"
print("Category:", classify_text(text))