nijatzeynalov's picture
Upload README.md with huggingface_hub
9c12e2d verified
|
raw
history blame
988 Bytes
metadata
{}

Led Monitor Electronic Scoreboard Rental

Description: Automatically classify and assign rental status to led monitors and electronic scoreboards to manage inventory and optimize delivery processes.

How to Use

Here is how to use this model to classify text into different categories:

    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    
    model_name = "interneuronai/led_monitor_electronic_scoreboard_rental_bert"
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    def classify_text(text):
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
        outputs = model(**inputs)
        predictions = outputs.logits.argmax(-1)
        return predictions.item()
    
    text = "Your text here"
    print("Category:", classify_text(text))