Edit model card

Gym Membership Upgrades

Description: Classify member feedback to identify potential areas of improvement and opportunities for upselling premium services, such as personal training or nutrition counseling.

How to Use

Here is how to use this model to classify text into different categories:

    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    
    model_name = "interneuronai/gym_membership_upgrades_pegasus"
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    def classify_text(text):
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
        outputs = model(**inputs)
        predictions = outputs.logits.argmax(-1)
        return predictions.item()
    
    text = "Your text here"
    print("Category:", classify_text(text)) 
Downloads last month
12
Safetensors
Model size
192M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.