Advertisement Cap on Banner Classification
Description: Automatically classify and assign appropriate advertisement cap to banners to streamline manufacturing and delivery processes.
How to Use
Here is how to use this model to classify text into different categories:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "interneuronai/advertisement_cap_on_banner_classification_bert"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
return predictions.item()
text = "Your text here"
print("Category:", classify_text(text))
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.