|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- instruction-pretrain/ft-instruction-synthesizer-collection |
|
--- |
|
# Instruction Pre-Training: Language Models are Supervised Multitask Learners |
|
This repo contains the **context-based instruction synthesizer** used in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**. |
|
|
|
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B. |
|
|
|
<p align='center'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400"> |
|
</p> |
|
|
|
|
|
## Resources |
|
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗** |
|
|
|
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co./instruction-pretrain/instruction-synthesizer) |
|
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co./datasets/instruction-pretrain/ft-instruction-synthesizer-collection) |
|
- General Models Pre-Trained from Scratch: |
|
- [InstructLM-500M](https://huggingface.co./instruction-pretrain/InstructLM-500M) |
|
- [InstructLLM-1.3B](https://huggingface.co./instruction-pretrain/InstructLLM-1.3B) |
|
- Domain-Specific Models Pre-Trained from Llama3-8B: |
|
- [Finance-Llama3-8B](https://huggingface.co./instruction-pretrain/finance-Llama3-8B) |
|
- [Biomedicine-Llama3-8B](https://huggingface.co./instruction-pretrain/medicine-Llama3-8B) |
|
|
|
|
|
## Synthesize Instruction-Response Pairs based on Any Raw text |
|
We conduct multitask fine-tuning on a language model to develop an instruction synthesizer capable of generating instruction-response pairs from any raw text. The fine-tuning data are available at [ft-instruction-synthesizer-collection](https://huggingface.co./datasets/instruction-pretrain/ft-instruction-synthesizer-collection) |
|
|
|
|
|
<p align='center'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0889QyG59QM3rPeZlcTzZ.png" width="700"> |
|
</p> |
|
|
|
For example, to prompt the synthesizer to generate instruction-response pairs based on a given raw text: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer") |
|
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer") |
|
|
|
# Put your raw text here: |
|
context = '''Free Fishing Weekend in NYS Slated |
|
This weekend (June 28th-29th) New Yorkers may fish for free without a license in any of the state's 7,500 lakes and ponds or 50,000 miles of rivers and streams. In addition, there are a number of free events and fishing clinics taking place across the state to encourage New Yorkers to enjoy the great outdoors. For more information, visit''' |
|
|
|
def parse_pred(pred): |
|
"""Extract the list of instruction-response pairs from the prediction""" |
|
QA_str_list = pred.split('</END>') |
|
if not pred.endswith('</END>'): |
|
QA_str_list = QA_str_list[:-1] |
|
|
|
QA_list = [] |
|
raw_questions = [] |
|
for QA_str in QA_str_list: |
|
try: |
|
assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}' |
|
Q_str, A_str = QA_str.split('<ANS>') |
|
Q_str, A_str = Q_str.strip(), A_str.strip() |
|
assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}' |
|
assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}' |
|
Q_str = Q_str.replace('<QUE>', '').strip() |
|
assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}' |
|
QA_list.append({'Q': Q_str, 'A': A_str}) |
|
raw_questions.append(Q_str.lower()) |
|
except: |
|
pass |
|
|
|
return QA_list |
|
|
|
def get_instruction_response_pairs(context): |
|
'''Prompt the synthesizer to generate instruction-response pairs based on the given context''' |
|
prompt = f'<s> <CON> {context} </CON>\n\n' |
|
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device) |
|
outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0] |
|
|
|
pred_start = int(inputs.shape[-1]) |
|
pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True) |
|
return parse_pred(pred) |
|
|
|
# Get the list of generated instruction-response paris |
|
instruction_response_pairs = get_instruction_response_pairs(context) |
|
|
|
# Print out the results |
|
print(f'# Context:\n{context}\n') |
|
for index, pair in enumerate(instruction_response_pairs): |
|
print(f'## Instruction {index + 1}:\n{pair["Q"]}\n## Response {index + 1}:\n{pair["A"]}\n') |
|
``` |
|
|
|
### To-Do |
|
- [ ] Add example usages for synthesizing few-shot examples |
|
|
|
## Citation |
|
If you find our work helpful, please cite us: |
|
|
|
[AdaptLLM](https://huggingface.co./papers/2309.09530) |
|
```bibtex |
|
@inproceedings{ |
|
cheng2024adapting, |
|
title={Adapting Large Language Models via Reading Comprehension}, |
|
author={Daixuan Cheng and Shaohan Huang and Furu Wei}, |
|
booktitle={The Twelfth International Conference on Learning Representations}, |
|
year={2024}, |
|
url={https://openreview.net/forum?id=y886UXPEZ0} |
|
} |
|
``` |