distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9277
  • Accuracy: {'accuracy': 0.897}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3166 {'accuracy': 0.887}
0.4289 2.0 500 0.4832 {'accuracy': 0.872}
0.4289 3.0 750 0.5347 {'accuracy': 0.878}
0.1949 4.0 1000 0.6836 {'accuracy': 0.886}
0.1949 5.0 1250 0.7414 {'accuracy': 0.892}
0.0533 6.0 1500 0.8023 {'accuracy': 0.886}
0.0533 7.0 1750 0.8958 {'accuracy': 0.885}
0.0093 8.0 2000 0.9028 {'accuracy': 0.895}
0.0093 9.0 2250 0.9309 {'accuracy': 0.896}
0.0072 10.0 2500 0.9277 {'accuracy': 0.897}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for infinityhawk/distilbert-base-uncased-lora-text-classification

Adapter
(229)
this model