wav2vec2-large-xls-r-300m-indonesian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ID dataset. It achieves the following results on the evaluation set:
- Loss: 0.2759
- Wer: 0.3256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.0387 | 4.72 | 1000 | 3.0892 | 1.0 |
1.7911 | 9.43 | 2000 | 0.8451 | 0.6702 |
1.2826 | 14.15 | 3000 | 0.4211 | 0.4166 |
1.1802 | 18.87 | 4000 | 0.3508 | 0.4690 |
1.1065 | 23.58 | 5000 | 0.3319 | 0.4662 |
1.0921 | 28.3 | 6000 | 0.3056 | 0.3880 |
1.0366 | 33.02 | 7000 | 0.2997 | 0.3665 |
0.9988 | 37.74 | 8000 | 0.2972 | 0.3653 |
0.9864 | 42.45 | 9000 | 0.2697 | 0.3371 |
0.9558 | 47.17 | 10000 | 0.2739 | 0.3141 |
0.9094 | 51.89 | 11000 | 0.2657 | 0.3533 |
0.9034 | 56.6 | 12000 | 0.2699 | 0.3397 |
0.8907 | 61.32 | 13000 | 0.2765 | 0.3470 |
0.8631 | 66.04 | 14000 | 0.2774 | 0.3346 |
0.8389 | 70.75 | 15000 | 0.2743 | 0.3365 |
0.8214 | 75.47 | 16000 | 0.2778 | 0.3201 |
0.8195 | 80.19 | 17000 | 0.2725 | 0.3286 |
0.7994 | 84.91 | 18000 | 0.2782 | 0.3315 |
0.7816 | 89.62 | 19000 | 0.2775 | 0.3363 |
0.7816 | 94.34 | 20000 | 0.2731 | 0.3278 |
0.7635 | 99.06 | 21000 | 0.2767 | 0.3259 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.