wav2vec2-large-xls-r-300m-breton

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6102
  • Wer: 0.4455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9205 3.33 500 2.8659 1.0
1.6403 6.67 1000 0.9440 0.7593
1.3483 10.0 1500 0.7580 0.6215
1.2255 13.33 2000 0.6851 0.5722
1.1139 16.67 2500 0.6409 0.5220
1.0688 20.0 3000 0.6245 0.5055
0.99 23.33 3500 0.6142 0.4874
0.9345 26.67 4000 0.5946 0.4829
0.9058 30.0 4500 0.6229 0.4704
0.8683 33.33 5000 0.6153 0.4666
0.8367 36.67 5500 0.5952 0.4542
0.8162 40.0 6000 0.6030 0.4541
0.8042 43.33 6500 0.5972 0.4485
0.7836 46.67 7000 0.6070 0.4497
0.7556 50.0 7500 0.6102 0.4455

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-breton

Evaluation results