Wav2Vec2-Large-XLSR-Indonesian

This is the model for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned facebook/wav2vec2-large-xlsr-53 model on the Indonesian Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "id", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian")


# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
  logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated as follows on the Indonesian test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "id", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\%\β€˜\'\”\οΏ½]'


# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 14.29 %

Training

The Common Voice train, validation, and synthetic voice datasets were used for training.

The script used for training can be found here

Downloads last month
8,789
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train indonesian-nlp/wav2vec2-large-xlsr-indonesian

Spaces using indonesian-nlp/wav2vec2-large-xlsr-indonesian 35

Evaluation results