metadata
tags:
- autotrain
- text-classification
language:
- pt
widget:
- text: I love AutoTrain 🤗
datasets:
- alexandreteles/autotrain-data-told_br_binary_sm
co2_eq_emissions:
emissions: 4.429755329718354
Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 2489276793
- Base model: bert-base-multilingual-cased
- Parameters: 109M
- Model size: 416MB
- CO2 Emissions (in grams): 4.4298
Validation Metrics
- Loss: 0.432
- Accuracy: 0.800
- Precision: 0.823
- Recall: 0.704
- AUC: 0.891
- F1: 0.759
Usage
This model was trained on a random subset of the told-br dataset (1/3 of the original size). Our main objective is to provide a small model that can be used to classify Brazilian Portuguese tweets in a binary way ('toxic' or 'non toxic').
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexandreteles/autotrain-told_br_binary_sm-2489276793
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("alexandreteles/told_br_binary_sm")
tokenizer = AutoTokenizer.from_pretrained("alexandreteles/told_br_binary_sm")
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)