DeepSeek-R1-Distill-Qwen-32B-AWQ wint4

Distillation of DeepSeek-R1 to Qwen 32B, quantized using AWQ to wint4. It fits on any 24GB VRAM GPU or 32GB URAM device!

MMLU-PRO

The MMLU-PRO dataset evaluates subjects across 14 distinct fields using a 5-shot accuracy measurement. Each task assesses models following the methodology of the original MMLU implementation, with each having ten possible choices.

Measure

  • Accuracy: Evaluated as "exact_match"

Shots

  • Shots: 5-shot

Tasks

Tasks Filter n-shot Metric Value Stderr
mmlu_pro custom-extract exact_match 0.5875 0.0044
biology custom-extract 5 exact_match 0.7978 0.0150
business custom-extract 5 exact_match 0.5982 0.0175
chemistry custom-extract 5 exact_match 0.4691 0.0148
computer_science custom-extract 5 exact_match 0.6122 0.0241
economics custom-extract 5 exact_match 0.7346 0.0152
engineering custom-extract 5 exact_match 0.3891 0.0157
health custom-extract 5 exact_match 0.6345 0.0168
history custom-extract 5 exact_match 0.6168 0.0249
law custom-extract 5 exact_match 0.4596 0.0150
math custom-extract 5 exact_match 0.6425 0.0130
other custom-extract 5 exact_match 0.6223 0.0160
philosophy custom-extract 5 exact_match 0.5731 0.0222
physics custom-extract 5 exact_match 0.5073 0.0139
psychology custom-extract 5 exact_match 0.7494 0.0154

Groups

Groups Filter n-shot Metric Value Stderr
mmlu_pro custom-extract exact_match 0.5875 0.0044
Downloads last month
12
Safetensors
Model size
5.73B params
Tensor type
I32
·
BF16
·
FP16
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for inarikami/DeepSeek-R1-Distill-Qwen-32B-AWQ

Quantized
(52)
this model