Edit model card

swin-tiny-patch4-window7-224-vit0

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4836
  • Accuracy: 0.8314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.13 0.97 18 1.0297 0.4330
0.9066 2.0 37 0.8349 0.6590
0.7157 2.97 55 0.8050 0.6743
0.6446 4.0 74 0.6934 0.7165
0.5707 4.97 92 0.6324 0.7433
0.5042 6.0 111 0.6156 0.7356
0.4714 6.97 129 0.6825 0.7241
0.4225 8.0 148 0.5692 0.7625
0.3912 8.97 166 0.6150 0.7586
0.3442 10.0 185 0.4901 0.8008
0.289 10.97 203 0.5580 0.7739
0.2827 12.0 222 0.5308 0.7969
0.2375 12.97 240 0.5274 0.8046
0.2493 14.0 259 0.5433 0.8046
0.2309 14.97 277 0.5355 0.7931
0.1963 16.0 296 0.4836 0.8314
0.2162 16.97 314 0.4973 0.8238
0.2256 18.0 333 0.4918 0.8276
0.2124 18.97 351 0.5071 0.8161
0.1797 19.46 360 0.4985 0.8199

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
36
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for impcabbie/swin-tiny-patch4-window7-224-vit0

Finetuned
(469)
this model

Evaluation results