videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5570
  • Accuracy: 0.8630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1920

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4529 0.0083 16 1.0265 0.7074
0.2409 1.0083 32 0.8731 0.7630
0.21 2.0083 48 0.8199 0.7481
0.149 3.0083 64 0.8314 0.7593
0.1131 4.0083 80 0.7753 0.7741
0.1177 5.0083 96 0.7645 0.7667
0.1106 6.0083 112 0.8109 0.7407
0.1346 7.0083 128 0.6663 0.7963
0.1054 8.0083 144 0.7931 0.7852
0.1302 9.0083 160 0.8380 0.7593
0.1201 10.0083 176 0.7758 0.7704
0.0992 11.0083 192 0.9272 0.7259
0.11 12.0083 208 0.8363 0.7667
0.122 13.0083 224 0.6285 0.8111
0.1336 14.0083 240 0.6990 0.8185
0.0996 15.0083 256 0.7357 0.8037
0.0711 16.0083 272 0.6621 0.8222
0.0839 17.0083 288 0.7744 0.7815
0.0865 18.0083 304 0.6456 0.8222
0.0607 19.0083 320 0.7278 0.7963
0.0672 20.0083 336 0.7863 0.8
0.0575 21.0083 352 0.6789 0.8185
0.0527 22.0083 368 0.6201 0.8148
0.0856 23.0083 384 0.6439 0.8
0.0621 24.0083 400 0.8606 0.7704
0.0725 25.0083 416 0.6359 0.8222
0.0659 26.0083 432 0.6513 0.8259
0.036 27.0083 448 0.6300 0.8111
0.0337 28.0083 464 0.6411 0.8444
0.0249 29.0083 480 0.5657 0.8593
0.0236 30.0083 496 0.5585 0.8296
0.0488 31.0083 512 0.6617 0.8148
0.0327 32.0083 528 0.5680 0.8407
0.0367 33.0083 544 0.7030 0.7963
0.0226 34.0083 560 0.8866 0.7593
0.0277 35.0083 576 0.8434 0.7963
0.0136 36.0083 592 0.7818 0.7778
0.017 37.0083 608 0.7851 0.7593
0.0391 38.0083 624 1.0256 0.7481
0.0211 39.0083 640 0.9225 0.7593
0.0322 40.0083 656 0.7322 0.7926
0.0203 41.0083 672 0.7956 0.7852
0.0223 42.0083 688 0.8495 0.7704
0.0228 43.0083 704 0.6640 0.8259
0.0115 44.0083 720 0.9645 0.7593
0.0222 45.0083 736 0.6595 0.8333
0.0165 46.0083 752 0.7120 0.7963
0.0165 47.0083 768 0.8027 0.8
0.0166 48.0083 784 0.8485 0.7963
0.0097 49.0083 800 0.8504 0.7926
0.0257 50.0083 816 0.7934 0.7963
0.0172 51.0083 832 0.7562 0.8037
0.0064 52.0083 848 0.7097 0.8111
0.0052 53.0083 864 0.7537 0.7963
0.012 54.0083 880 0.7386 0.8074
0.0174 55.0083 896 0.6894 0.8222
0.0151 56.0083 912 0.9360 0.7667
0.0081 57.0083 928 0.7102 0.8222
0.0142 58.0083 944 0.7866 0.8111
0.0169 59.0083 960 0.6516 0.8370
0.0149 60.0083 976 1.0039 0.7556
0.0106 61.0083 992 0.6570 0.8407
0.005 62.0083 1008 0.7252 0.8037
0.0115 63.0083 1024 0.6913 0.8333
0.0059 64.0083 1040 0.6858 0.8481
0.0225 65.0083 1056 0.7342 0.8148
0.0151 66.0083 1072 0.6860 0.8259
0.0098 67.0083 1088 0.7041 0.8296
0.0097 68.0083 1104 0.7321 0.8185
0.014 69.0083 1120 0.6251 0.8481
0.0252 70.0083 1136 0.6771 0.8370
0.0052 71.0083 1152 0.7527 0.8
0.0189 72.0083 1168 0.6936 0.8222
0.0038 73.0083 1184 0.6541 0.8296
0.0027 74.0083 1200 0.7257 0.8074
0.0028 75.0083 1216 0.6686 0.8185
0.0034 76.0083 1232 0.6239 0.8370
0.0111 77.0083 1248 0.7719 0.7926
0.009 78.0083 1264 0.6882 0.8185
0.0038 79.0083 1280 0.7040 0.8222
0.005 80.0083 1296 0.6955 0.8370
0.003 81.0083 1312 0.6797 0.8481
0.0035 82.0083 1328 0.6548 0.8370
0.0029 83.0083 1344 0.6407 0.8370
0.0131 84.0083 1360 0.6152 0.8407
0.0026 85.0083 1376 0.5863 0.8444
0.0048 86.0083 1392 0.6048 0.8519
0.0032 87.0083 1408 0.6064 0.8481
0.0067 88.0083 1424 0.6492 0.8370
0.0077 89.0083 1440 0.7520 0.7852
0.012 90.0083 1456 0.7662 0.8037
0.0092 91.0083 1472 0.7106 0.8074
0.0034 92.0083 1488 0.7589 0.8111
0.0042 93.0083 1504 0.6382 0.8296
0.0053 94.0083 1520 0.6153 0.8519
0.0038 95.0083 1536 0.6227 0.8370
0.002 96.0083 1552 0.6424 0.8407
0.0063 97.0083 1568 0.6215 0.8481
0.0021 98.0083 1584 0.6355 0.8333
0.0022 99.0083 1600 0.6141 0.8407
0.002 100.0083 1616 0.5682 0.8519
0.0058 101.0083 1632 0.5804 0.8519
0.0027 102.0083 1648 0.5724 0.8556
0.0026 103.0083 1664 0.5557 0.8630
0.0016 104.0083 1680 0.5465 0.8593
0.0018 105.0083 1696 0.5636 0.8630
0.0022 106.0083 1712 0.5932 0.8519
0.0018 107.0083 1728 0.5884 0.8593
0.0018 108.0083 1744 0.5960 0.8519
0.0041 109.0083 1760 0.5984 0.8556
0.0019 110.0083 1776 0.6015 0.8519
0.0031 111.0083 1792 0.5941 0.8593
0.0056 112.0083 1808 0.5957 0.8593
0.0014 113.0083 1824 0.6007 0.8593
0.0145 114.0083 1840 0.6138 0.8444
0.002 115.0083 1856 0.6205 0.8407
0.0046 116.0083 1872 0.6194 0.8444
0.0018 117.0083 1888 0.6189 0.8444
0.0023 118.0083 1904 0.6391 0.8444
0.0021 119.0083 1920 0.6227 0.8481

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
18
Safetensors
Model size
86.3M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ihsanahakiim/videomae-base-finetuned-ucf101-subset

Finetuned
(463)
this model