metadata
language:
- ur
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- urdu
- ur
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium Urdu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
args: 'config: ur, split: test'
metrics:
- name: Wer
type: wer
value: 26.980130911344357
Whisper Medium Urdu
This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 ur dataset. It achieves the following results on the evaluation set:
- Loss: 0.4685
- Wer: 26.9801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 300
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3908 | 0.48 | 100 | 0.5148 | 30.7061 |
0.3519 | 0.97 | 200 | 0.4685 | 26.9801 |
0.2426 | 1.45 | 300 | 0.4636 | 28.5023 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2