whisper-base-ps / README.md
ihanif's picture
update model card README.md
e6cae52
|
raw
history blame
2.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: openai/whisper-base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: ps_af
          split: test
          args: ps_af
        metrics:
          - name: Wer
            type: wer
            value: 59.200968523002416

openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9339
  • Wer: 59.2010

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9153 2.5 100 1.0240 68.9864
0.6865 5.0 200 0.8968 61.7660
0.5474 7.5 300 0.8744 60.5554
0.4646 10.0 400 0.8710 60.0560
0.4557 12.5 500 0.8732 59.4658
0.3882 15.0 600 0.8819 59.0648
0.3346 17.5 700 0.9032 59.4809
0.2947 20.0 800 0.9144 59.7685
0.2724 22.5 900 0.9289 58.9815
0.2785 25.0 1000 0.9339 59.2010

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2