RuBit-Llama-63M

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the darulm dataset. From darulm aphorisms, dramaturgy, history, humor, literature domains were sampled

Training on 2_125_871_104 tokens.

Inspired by abideen/Bitnet-Llama-70M

Model description

Sample inference code

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load a pretrained BitNet model
model = "igorktech/RuBit-LLama-63M"
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(model)

def convert_to_bitnet(model, copy_weights):
    for name, module in model.named_modules():
        # Replace linear layers with BitNet
        if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP):
            for child_name, child_module in module.named_children():
                if isinstance(child_module, nn.Linear):
                    bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0")
                    if copy_weights:
                        bitlinear.weight = child_module.weight
                        if child_module.bias is not None:
                            bitlinear.bias = child_module.bias
                    setattr(module, child_name, bitlinear)
        # Remove redundant input_layernorms
        elif isinstance(module, LlamaDecoderLayer):
            for child_name, child_module in module.named_children():
                if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm":
                    setattr(module, child_name, nn.Identity().to(device="cuda:0"))
              

convert_to_bitnet(model, copy_weights=True)
model.to(device="cuda:0")

prompt = "Привет"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
generate_ids = model.generate(inputs.input_ids, max_length=100)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0015
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
32
Safetensors
Model size
63.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for igorktech/RuBit-LLama-63M

Finetuned
(63)
this model
Quantizations
1 model

Dataset used to train igorktech/RuBit-LLama-63M