metadata
tags:
- classification
- generated_from_trainer
datasets:
- hate_speech_offensive
metrics:
- accuracy
model-index:
- name: clasificador-hate_speech_offensive-BERTweet
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: hate_speech_offensive
type: hate_speech_offensive
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9195077667944321
clasificador-hate_speech_offensive-BERTweet
This model is a fine-tuned version of vinai/bertweet-base on the hate_speech_offensive dataset. It achieves the following results on the evaluation set:
- Loss: 0.2951
- Accuracy: 0.9195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3129 | 1.0 | 2479 | 0.3258 | 0.9112 |
0.2877 | 2.0 | 4958 | 0.2844 | 0.9124 |
0.235 | 3.0 | 7437 | 0.2951 | 0.9195 |
Framework versions
- Transformers 4.27.2
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2