qa_kor_math / README.md
idah4's picture
Update README.md
650d354 verified
|
raw
history blame
2.45 kB
---
license: mit
base_model: gogamza/kobart-base-v2
tags:
- generated_from_trainer
model-index:
- name: qa_kor_math
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qa_kor_math
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2586
## Model description
ν•œκ΅­μ–΄ μˆ˜ν•™ 문제λ₯Ό μž…λ ₯ν•˜λ©΄, 문제 μœ ν˜•κ³Ό 문제 μœ ν˜•μ— λŒ€ν•œ μ„€λͺ…, 풀이(μ½”λ“œ), 정닡이 좜λ ₯λ˜λ„λ‘ fine tuning ν–ˆμŠ΅λ‹ˆλ‹€.</br>
문제 μœ ν˜• μ’…λ₯˜λ‘œλŠ” μ‚°μˆ μ—°μ‚°, μˆœμ„œμ •ν•˜κΈ°, μ‘°ν•©ν•˜κΈ°, 수 μ°ΎκΈ°, 크기 비ꡐ, λ„ν˜•μ΄ μžˆμŠ΅λ‹ˆλ‹€.</br>
λͺ¨λΈμ΄ κ°€λ²Όμš΄ 탓인지 정확도가 λ†’μ§€λŠ” μ•Šμ•„ λ³΄μž…λ‹ˆλ‹€.</br>
## Intended uses & limitations
## Training and evaluation data
[tunib-ai](https://github.com/tunib-ai/KMWP)μ—μ„œ git에 κ³΅κ°œν•œ train 데이터 μ…‹μœΌλ‘œ ν•™μŠ΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€.</br>
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.63 | 100 | 2.9907 |
| No log | 1.26 | 200 | 0.9196 |
| No log | 1.89 | 300 | 0.5858 |
| No log | 2.52 | 400 | 0.4351 |
| 2.4889 | 3.14 | 500 | 0.3693 |
| 2.4889 | 3.77 | 600 | 0.3356 |
| 2.4889 | 4.4 | 700 | 0.3182 |
| 2.4889 | 5.03 | 800 | 0.3017 |
| 2.4889 | 5.66 | 900 | 0.2949 |
| 0.3483 | 6.29 | 1000 | 0.2798 |
| 0.3483 | 6.92 | 1100 | 0.2748 |
| 0.3483 | 7.55 | 1200 | 0.2695 |
| 0.3483 | 8.18 | 1300 | 0.2649 |
| 0.3483 | 8.81 | 1400 | 0.2610 |
| 0.2753 | 9.43 | 1500 | 0.2586 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2