qa_kor_math / README.md
idah4's picture
Training in progress, step 800
f369d71 verified
|
raw
history blame
2.03 kB
metadata
license: mit
base_model: gogamza/kobart-base-v2
tags:
  - generated_from_trainer
model-index:
  - name: qa_kor_math
    results: []

qa_kor_math

This model is a fine-tuned version of gogamza/kobart-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 0.63 100 2.9907
No log 1.26 200 0.9196
No log 1.89 300 0.5858
No log 2.52 400 0.4351
2.4889 3.14 500 0.3693
2.4889 3.77 600 0.3356
2.4889 4.4 700 0.3182
2.4889 5.03 800 0.3017
2.4889 5.66 900 0.2949
0.3483 6.29 1000 0.2798
0.3483 6.92 1100 0.2748
0.3483 7.55 1200 0.2695
0.3483 8.18 1300 0.2649
0.3483 8.81 1400 0.2610
0.2753 9.43 1500 0.2586

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2