icefog72's picture
Update README.md
f993ce7 verified
|
raw
history blame
4.4 kB
metadata
license: cc-by-nc-4.0
library_name: transformers
tags:
  - mergekit
  - merge
  - alpaca
  - mistral
  - not-for-all-audiences
  - nsfw
base_model: []
model-index:
  - name: Ice0.40-20.11-RP
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 47.63
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/Ice0.40-20.11-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 31.51
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/Ice0.40-20.11-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 6.27
            name: exact match
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/Ice0.40-20.11-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.61
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/Ice0.40-20.11-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 14.27
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/Ice0.40-20.11-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 23.32
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/Ice0.40-20.11-RP
          name: Open LLM Leaderboard

IceDrunkenCherryRP (Ice0.40-20.11-RP)

Quants and settings-rules-lorebooks will be added in a while.

In general Alpaca format will work.

It shoud handle 16-25k context window, maybe 32k.

This is a merge of pre-trained language models created using mergekit.

Exl2 Quants

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

  • icefog72/Ice0.29-06.11-RP
  • icefog72/Ice0.37-18.11-RP

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: icefog72/Ice0.37-18.11-RP
        layer_range: [0, 32]
      - model: icefog72/Ice0.29-06.11-RP
        layer_range: [0, 32]

merge_method: slerp
base_model: icefog72/Ice0.37-18.11-RP
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 21.77
IFEval (0-Shot) 47.63
BBH (3-Shot) 31.51
MATH Lvl 5 (4-Shot) 6.27
GPQA (0-shot) 7.61
MuSR (0-shot) 14.27
MMLU-PRO (5-shot) 23.32