File size: 2,296 Bytes
075d562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: apache-2.0
base_model: cis-lmu/glot500-base
tags:
- generated_from_trainer
datasets:
- universal_dependencies
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: glot500_fintuned_en_ewt
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: universal_dependencies
      type: universal_dependencies
      config: en_ewt
      split: test
      args: en_ewt
    metrics:
    - name: Precision
      type: precision
      value: 0.9531084235094419
    - name: Recall
      type: recall
      value: 0.9548507779950685
    - name: F1
      type: f1
      value: 0.9539788051903922
    - name: Accuracy
      type: accuracy
      value: 0.9606748200873019
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# glot500_fintuned_en_ewt

This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co./cis-lmu/glot500-base) on the universal_dependencies dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1532
- Precision: 0.9531
- Recall: 0.9549
- F1: 0.9540
- Accuracy: 0.9607

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.0263        | 1.0   | 784  | 0.2097          | 0.9385    | 0.9394 | 0.9389 | 0.9477   |
| 0.1409        | 2.0   | 1568 | 0.1532          | 0.9531    | 0.9549 | 0.9540 | 0.9607   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3