ibrahimbukhari1998 commited on
Commit
075d562
·
verified ·
1 Parent(s): 26ebea5

End of training

Browse files
Files changed (2) hide show
  1. README.md +92 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: cis-lmu/glot500-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - universal_dependencies
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: glot500_fintuned_en_ewt
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: universal_dependencies
22
+ type: universal_dependencies
23
+ config: en_ewt
24
+ split: test
25
+ args: en_ewt
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.9531084235094419
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.9548507779950685
33
+ - name: F1
34
+ type: f1
35
+ value: 0.9539788051903922
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9606748200873019
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # glot500_fintuned_en_ewt
45
+
46
+ This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1532
49
+ - Precision: 0.9531
50
+ - Recall: 0.9549
51
+ - F1: 0.9540
52
+ - Accuracy: 0.9607
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 2
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 1.0263 | 1.0 | 784 | 0.2097 | 0.9385 | 0.9394 | 0.9389 | 0.9477 |
84
+ | 0.1409 | 2.0 | 1568 | 0.1532 | 0.9531 | 0.9549 | 0.9540 | 0.9607 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.46.3
90
+ - Pytorch 2.5.1
91
+ - Datasets 3.1.0
92
+ - Tokenizers 0.20.3
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:93febc1072fb1ea0b026c1834d336ac2002e380e274d5093f1fb1197aced9c5d
3
  size 1574203208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cfcc947e79a601554fa388401a6a003a65461021a4fe887b82d3be280ff125f
3
  size 1574203208