ibnummuhammad
commited on
Commit
•
f930178
1
Parent(s):
bc7c2f9
Add box_cox.ipynb
Browse files- autoregression.ipynb +52 -34
- box_cox.ipynb +2721 -0
- coal-price-forecast.ipynb +11 -4
- cross_validation.ipynb +109 -80
- multiple_timeseries_forecast.ipynb +0 -0
autoregression.ipynb
CHANGED
@@ -1231,23 +1231,28 @@
|
|
1231 |
"import pandas as pd\n",
|
1232 |
"\n",
|
1233 |
"# Read in the data\n",
|
1234 |
-
"data = pd.read_csv(
|
1235 |
-
"data[
|
1236 |
"\n",
|
1237 |
"\n",
|
1238 |
-
"def plot_passenger_volumes(df: pd.DataFrame
|
1239 |
-
" y: str) -> None:\n",
|
1240 |
" \"\"\"General function to plot the passenger data.\"\"\"\n",
|
1241 |
"\n",
|
1242 |
-
" fig = px.line(df, x
|
1243 |
-
" fig.update_layout(
|
1244 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
1245 |
"\n",
|
1246 |
" return fig.show()\n",
|
1247 |
"\n",
|
1248 |
"\n",
|
1249 |
"# Plot the airline passenger data\n",
|
1250 |
-
"plot_passenger_volumes(df=data, y
|
1251 |
]
|
1252 |
},
|
1253 |
{
|
@@ -2478,12 +2483,12 @@
|
|
2478 |
"from scipy.stats import boxcox\n",
|
2479 |
"\n",
|
2480 |
"# Make the target stationary\n",
|
2481 |
-
"data[
|
2482 |
"data[\"Passenger_stationary\"] = data[\"Passengers_boxcox\"].diff()\n",
|
2483 |
"data.dropna(inplace=True)\n",
|
2484 |
"\n",
|
2485 |
"# Plot the stationary airline passenger data\n",
|
2486 |
-
"plot_passenger_volumes(df=data, y
|
2487 |
]
|
2488 |
},
|
2489 |
{
|
@@ -2509,15 +2514,16 @@
|
|
2509 |
"# Import packages\n",
|
2510 |
"from statsmodels.tsa.stattools import adfuller\n",
|
2511 |
"\n",
|
|
|
2512 |
"# ADF test for stationary\n",
|
2513 |
"def adf_test(series):\n",
|
2514 |
" \"\"\"Using an ADF test to determine if a series is stationary\"\"\"\n",
|
2515 |
" test_results = adfuller(series)\n",
|
2516 |
-
" print(
|
2517 |
-
" print(
|
2518 |
-
" print(
|
2519 |
" for threshold, adf_stat in test_results[4].items():\n",
|
2520 |
-
" print(
|
2521 |
"\n",
|
2522 |
"\n",
|
2523 |
"print(adf_test(data[\"Passenger_stationary\"]))"
|
@@ -2686,13 +2692,13 @@
|
|
2686 |
"from statsmodels.graphics.tsaplots import plot_pacf\n",
|
2687 |
"\n",
|
2688 |
"# Plot partial autocorrelation\n",
|
2689 |
-
"plt.rc(\"figure\", figsize=(11,5))\n",
|
2690 |
-
"plot_pacf(data[
|
2691 |
-
"plt.xlabel(
|
2692 |
-
"plt.ylabel(
|
2693 |
"plt.xticks(fontsize=18)\n",
|
2694 |
"plt.yticks(fontsize=18)\n",
|
2695 |
-
"plt.title(
|
2696 |
"plt.tight_layout()\n",
|
2697 |
"plt.show()"
|
2698 |
]
|
@@ -2726,12 +2732,12 @@
|
|
2726 |
"from statsmodels.tsa.ar_model import AutoReg, ar_select_order\n",
|
2727 |
"\n",
|
2728 |
"# Split train and test\n",
|
2729 |
-
"train = data.iloc[
|
2730 |
-
"test = data.iloc[-int(len(data) * 0.2):]\n",
|
2731 |
"\n",
|
2732 |
"# Build AR model\n",
|
2733 |
-
"selector = ar_select_order(train[
|
2734 |
-
"model = AutoReg(train[
|
2735 |
]
|
2736 |
},
|
2737 |
{
|
@@ -4023,31 +4029,43 @@
|
|
4023 |
"boxcox_forecasts = []\n",
|
4024 |
"for idx in range(len(test)):\n",
|
4025 |
" if idx == 0:\n",
|
4026 |
-
" boxcox_forecast =
|
|
|
|
|
4027 |
" else:\n",
|
4028 |
-
" boxcox_forecast = transformed_forecasts[idx] + boxcox_forecasts[idx-1]\n",
|
4029 |
"\n",
|
4030 |
" boxcox_forecasts.append(boxcox_forecast)\n",
|
4031 |
"\n",
|
4032 |
"forecasts = inv_boxcox(boxcox_forecasts, lam)\n",
|
4033 |
"\n",
|
4034 |
"\n",
|
4035 |
-
"def plot_forecasts(forecasts: list[float]
|
4036 |
-
" title: str) -> None:\n",
|
4037 |
" \"\"\"Function to plot the forecasts.\"\"\"\n",
|
4038 |
" fig = go.Figure()\n",
|
4039 |
-
" fig.add_trace(
|
4040 |
-
"
|
4041 |
-
"
|
4042 |
-
" fig.
|
4043 |
-
"
|
4044 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4045 |
"\n",
|
4046 |
" return fig.show()\n",
|
4047 |
"\n",
|
4048 |
"\n",
|
4049 |
"# Plot the forecasts\n",
|
4050 |
-
"plot_forecasts(forecasts,
|
4051 |
]
|
4052 |
},
|
4053 |
{
|
|
|
1231 |
"import pandas as pd\n",
|
1232 |
"\n",
|
1233 |
"# Read in the data\n",
|
1234 |
+
"data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")\n",
|
1235 |
+
"data[\"Month\"] = pd.to_datetime(data[\"Month\"])\n",
|
1236 |
"\n",
|
1237 |
"\n",
|
1238 |
+
"def plot_passenger_volumes(df: pd.DataFrame, y: str) -> None:\n",
|
|
|
1239 |
" \"\"\"General function to plot the passenger data.\"\"\"\n",
|
1240 |
"\n",
|
1241 |
+
" fig = px.line(df, x=\"Month\", y=y, labels={\"Month\": \"Date\"})\n",
|
1242 |
+
" fig.update_layout(\n",
|
1243 |
+
" template=\"simple_white\",\n",
|
1244 |
+
" font=dict(size=18),\n",
|
1245 |
+
" title_text=\"Airline Passengers\",\n",
|
1246 |
+
" width=650,\n",
|
1247 |
+
" title_x=0.5,\n",
|
1248 |
+
" height=400,\n",
|
1249 |
+
" )\n",
|
1250 |
"\n",
|
1251 |
" return fig.show()\n",
|
1252 |
"\n",
|
1253 |
"\n",
|
1254 |
"# Plot the airline passenger data\n",
|
1255 |
+
"plot_passenger_volumes(df=data, y=\"#Passengers\")"
|
1256 |
]
|
1257 |
},
|
1258 |
{
|
|
|
2483 |
"from scipy.stats import boxcox\n",
|
2484 |
"\n",
|
2485 |
"# Make the target stationary\n",
|
2486 |
+
"data[\"Passengers_boxcox\"], lam = boxcox(data[\"#Passengers\"])\n",
|
2487 |
"data[\"Passenger_stationary\"] = data[\"Passengers_boxcox\"].diff()\n",
|
2488 |
"data.dropna(inplace=True)\n",
|
2489 |
"\n",
|
2490 |
"# Plot the stationary airline passenger data\n",
|
2491 |
+
"plot_passenger_volumes(df=data, y=\"Passenger_stationary\")"
|
2492 |
]
|
2493 |
},
|
2494 |
{
|
|
|
2514 |
"# Import packages\n",
|
2515 |
"from statsmodels.tsa.stattools import adfuller\n",
|
2516 |
"\n",
|
2517 |
+
"\n",
|
2518 |
"# ADF test for stationary\n",
|
2519 |
"def adf_test(series):\n",
|
2520 |
" \"\"\"Using an ADF test to determine if a series is stationary\"\"\"\n",
|
2521 |
" test_results = adfuller(series)\n",
|
2522 |
+
" print(\"ADF Statistic: \", test_results[0])\n",
|
2523 |
+
" print(\"P-Value: \", test_results[1])\n",
|
2524 |
+
" print(\"Critical Values:\")\n",
|
2525 |
" for threshold, adf_stat in test_results[4].items():\n",
|
2526 |
+
" print(\"\\t%s: %.2f\" % (threshold, adf_stat))\n",
|
2527 |
"\n",
|
2528 |
"\n",
|
2529 |
"print(adf_test(data[\"Passenger_stationary\"]))"
|
|
|
2692 |
"from statsmodels.graphics.tsaplots import plot_pacf\n",
|
2693 |
"\n",
|
2694 |
"# Plot partial autocorrelation\n",
|
2695 |
+
"plt.rc(\"figure\", figsize=(11, 5))\n",
|
2696 |
+
"plot_pacf(data[\"Passenger_stationary\"], method=\"ywm\")\n",
|
2697 |
+
"plt.xlabel(\"Lags\", fontsize=18)\n",
|
2698 |
+
"plt.ylabel(\"Correlation\", fontsize=18)\n",
|
2699 |
"plt.xticks(fontsize=18)\n",
|
2700 |
"plt.yticks(fontsize=18)\n",
|
2701 |
+
"plt.title(\"Partial Autocorrelation Plot\", fontsize=20)\n",
|
2702 |
"plt.tight_layout()\n",
|
2703 |
"plt.show()"
|
2704 |
]
|
|
|
2732 |
"from statsmodels.tsa.ar_model import AutoReg, ar_select_order\n",
|
2733 |
"\n",
|
2734 |
"# Split train and test\n",
|
2735 |
+
"train = data.iloc[: -int(len(data) * 0.2)]\n",
|
2736 |
+
"test = data.iloc[-int(len(data) * 0.2) :]\n",
|
2737 |
"\n",
|
2738 |
"# Build AR model\n",
|
2739 |
+
"selector = ar_select_order(train[\"Passenger_stationary\"], 15)\n",
|
2740 |
+
"model = AutoReg(train[\"Passenger_stationary\"], lags=selector.ar_lags).fit()"
|
2741 |
]
|
2742 |
},
|
2743 |
{
|
|
|
4029 |
"boxcox_forecasts = []\n",
|
4030 |
"for idx in range(len(test)):\n",
|
4031 |
" if idx == 0:\n",
|
4032 |
+
" boxcox_forecast = (\n",
|
4033 |
+
" transformed_forecasts[idx] + train[\"Passengers_boxcox\"].iloc[-1]\n",
|
4034 |
+
" )\n",
|
4035 |
" else:\n",
|
4036 |
+
" boxcox_forecast = transformed_forecasts[idx] + boxcox_forecasts[idx - 1]\n",
|
4037 |
"\n",
|
4038 |
" boxcox_forecasts.append(boxcox_forecast)\n",
|
4039 |
"\n",
|
4040 |
"forecasts = inv_boxcox(boxcox_forecasts, lam)\n",
|
4041 |
"\n",
|
4042 |
"\n",
|
4043 |
+
"def plot_forecasts(forecasts: list[float], title: str) -> None:\n",
|
|
|
4044 |
" \"\"\"Function to plot the forecasts.\"\"\"\n",
|
4045 |
" fig = go.Figure()\n",
|
4046 |
+
" fig.add_trace(\n",
|
4047 |
+
" go.Scatter(x=train[\"Month\"], y=train[\"#Passengers\"], name=\"Train\")\n",
|
4048 |
+
" )\n",
|
4049 |
+
" fig.add_trace(\n",
|
4050 |
+
" go.Scatter(x=test[\"Month\"], y=test[\"#Passengers\"], name=\"Test\")\n",
|
4051 |
+
" )\n",
|
4052 |
+
" fig.add_trace(go.Scatter(x=test[\"Month\"], y=forecasts, name=\"Forecast\"))\n",
|
4053 |
+
" fig.update_layout(\n",
|
4054 |
+
" template=\"simple_white\",\n",
|
4055 |
+
" font=dict(size=18),\n",
|
4056 |
+
" title_text=title,\n",
|
4057 |
+
" width=650,\n",
|
4058 |
+
" title_x=0.5,\n",
|
4059 |
+
" height=400,\n",
|
4060 |
+
" xaxis_title=\"Date\",\n",
|
4061 |
+
" yaxis_title=\"Passenger Volume\",\n",
|
4062 |
+
" )\n",
|
4063 |
"\n",
|
4064 |
" return fig.show()\n",
|
4065 |
"\n",
|
4066 |
"\n",
|
4067 |
"# Plot the forecasts\n",
|
4068 |
+
"plot_forecasts(forecasts, \"Autoregression\")"
|
4069 |
]
|
4070 |
},
|
4071 |
{
|
box_cox.ipynb
ADDED
@@ -0,0 +1,2721 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Import packages\n",
|
10 |
+
"import plotly.express as px\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"# Import the transform\n",
|
13 |
+
"from scipy.stats import boxcox"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 9,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"# Read in the data\n",
|
23 |
+
"data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"text/html": [
|
34 |
+
"<div>\n",
|
35 |
+
"<style scoped>\n",
|
36 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
37 |
+
" vertical-align: middle;\n",
|
38 |
+
" }\n",
|
39 |
+
"\n",
|
40 |
+
" .dataframe tbody tr th {\n",
|
41 |
+
" vertical-align: top;\n",
|
42 |
+
" }\n",
|
43 |
+
"\n",
|
44 |
+
" .dataframe thead th {\n",
|
45 |
+
" text-align: right;\n",
|
46 |
+
" }\n",
|
47 |
+
"</style>\n",
|
48 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
49 |
+
" <thead>\n",
|
50 |
+
" <tr style=\"text-align: right;\">\n",
|
51 |
+
" <th></th>\n",
|
52 |
+
" <th>Month</th>\n",
|
53 |
+
" <th>#Passengers</th>\n",
|
54 |
+
" </tr>\n",
|
55 |
+
" </thead>\n",
|
56 |
+
" <tbody>\n",
|
57 |
+
" <tr>\n",
|
58 |
+
" <th>0</th>\n",
|
59 |
+
" <td>1949-01</td>\n",
|
60 |
+
" <td>112</td>\n",
|
61 |
+
" </tr>\n",
|
62 |
+
" <tr>\n",
|
63 |
+
" <th>1</th>\n",
|
64 |
+
" <td>1949-02</td>\n",
|
65 |
+
" <td>118</td>\n",
|
66 |
+
" </tr>\n",
|
67 |
+
" <tr>\n",
|
68 |
+
" <th>2</th>\n",
|
69 |
+
" <td>1949-03</td>\n",
|
70 |
+
" <td>132</td>\n",
|
71 |
+
" </tr>\n",
|
72 |
+
" <tr>\n",
|
73 |
+
" <th>3</th>\n",
|
74 |
+
" <td>1949-04</td>\n",
|
75 |
+
" <td>129</td>\n",
|
76 |
+
" </tr>\n",
|
77 |
+
" <tr>\n",
|
78 |
+
" <th>4</th>\n",
|
79 |
+
" <td>1949-05</td>\n",
|
80 |
+
" <td>121</td>\n",
|
81 |
+
" </tr>\n",
|
82 |
+
" <tr>\n",
|
83 |
+
" <th>...</th>\n",
|
84 |
+
" <td>...</td>\n",
|
85 |
+
" <td>...</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>139</th>\n",
|
89 |
+
" <td>1960-08</td>\n",
|
90 |
+
" <td>606</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" <tr>\n",
|
93 |
+
" <th>140</th>\n",
|
94 |
+
" <td>1960-09</td>\n",
|
95 |
+
" <td>508</td>\n",
|
96 |
+
" </tr>\n",
|
97 |
+
" <tr>\n",
|
98 |
+
" <th>141</th>\n",
|
99 |
+
" <td>1960-10</td>\n",
|
100 |
+
" <td>461</td>\n",
|
101 |
+
" </tr>\n",
|
102 |
+
" <tr>\n",
|
103 |
+
" <th>142</th>\n",
|
104 |
+
" <td>1960-11</td>\n",
|
105 |
+
" <td>390</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>143</th>\n",
|
109 |
+
" <td>1960-12</td>\n",
|
110 |
+
" <td>432</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" </tbody>\n",
|
113 |
+
"</table>\n",
|
114 |
+
"<p>144 rows × 2 columns</p>\n",
|
115 |
+
"</div>"
|
116 |
+
],
|
117 |
+
"text/plain": [
|
118 |
+
" Month #Passengers\n",
|
119 |
+
"0 1949-01 112\n",
|
120 |
+
"1 1949-02 118\n",
|
121 |
+
"2 1949-03 132\n",
|
122 |
+
"3 1949-04 129\n",
|
123 |
+
"4 1949-05 121\n",
|
124 |
+
".. ... ...\n",
|
125 |
+
"139 1960-08 606\n",
|
126 |
+
"140 1960-09 508\n",
|
127 |
+
"141 1960-10 461\n",
|
128 |
+
"142 1960-11 390\n",
|
129 |
+
"143 1960-12 432\n",
|
130 |
+
"\n",
|
131 |
+
"[144 rows x 2 columns]"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
"execution_count": 2,
|
135 |
+
"metadata": {},
|
136 |
+
"output_type": "execute_result"
|
137 |
+
}
|
138 |
+
],
|
139 |
+
"source": [
|
140 |
+
"data"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 3,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [
|
148 |
+
{
|
149 |
+
"data": {
|
150 |
+
"text/plain": [
|
151 |
+
"0 1949-01\n",
|
152 |
+
"1 1949-02\n",
|
153 |
+
"2 1949-03\n",
|
154 |
+
"3 1949-04\n",
|
155 |
+
"4 1949-05\n",
|
156 |
+
" ... \n",
|
157 |
+
"139 1960-08\n",
|
158 |
+
"140 1960-09\n",
|
159 |
+
"141 1960-10\n",
|
160 |
+
"142 1960-11\n",
|
161 |
+
"143 1960-12\n",
|
162 |
+
"Name: Month, Length: 144, dtype: object"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
"execution_count": 3,
|
166 |
+
"metadata": {},
|
167 |
+
"output_type": "execute_result"
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"source": [
|
171 |
+
"data[\"Month\"]"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 4,
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"# def plotting(title, data, x, y, x_label, y_label, text=False, lam=None):\n",
|
181 |
+
"title=\"Airline Passengers\"\n",
|
182 |
+
"data=data\n",
|
183 |
+
"x=\"Month\"\n",
|
184 |
+
"y=\"#Passengers\"\n",
|
185 |
+
"x_label=\"Date\"\n",
|
186 |
+
"y_label=\"Passengers\"\n",
|
187 |
+
"text=False\n",
|
188 |
+
"lam=None"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": 5,
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"\"\"\"General function to plot the passenger data.\"\"\"\n",
|
198 |
+
"fig = px.line(data, x=data[x], y=data[y], labels={x: x_label, y: y_label})"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 6,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"data": {
|
208 |
+
"application/vnd.plotly.v1+json": {
|
209 |
+
"config": {
|
210 |
+
"plotlyServerURL": "https://plot.ly"
|
211 |
+
},
|
212 |
+
"data": [
|
213 |
+
{
|
214 |
+
"hovertemplate": "Date=%{x}<br>Passengers=%{y}<extra></extra>",
|
215 |
+
"legendgroup": "",
|
216 |
+
"line": {
|
217 |
+
"color": "#636efa",
|
218 |
+
"dash": "solid"
|
219 |
+
},
|
220 |
+
"marker": {
|
221 |
+
"symbol": "circle"
|
222 |
+
},
|
223 |
+
"mode": "lines",
|
224 |
+
"name": "",
|
225 |
+
"orientation": "v",
|
226 |
+
"showlegend": false,
|
227 |
+
"type": "scatter",
|
228 |
+
"x": [
|
229 |
+
"1949-01",
|
230 |
+
"1949-02",
|
231 |
+
"1949-03",
|
232 |
+
"1949-04",
|
233 |
+
"1949-05",
|
234 |
+
"1949-06",
|
235 |
+
"1949-07",
|
236 |
+
"1949-08",
|
237 |
+
"1949-09",
|
238 |
+
"1949-10",
|
239 |
+
"1949-11",
|
240 |
+
"1949-12",
|
241 |
+
"1950-01",
|
242 |
+
"1950-02",
|
243 |
+
"1950-03",
|
244 |
+
"1950-04",
|
245 |
+
"1950-05",
|
246 |
+
"1950-06",
|
247 |
+
"1950-07",
|
248 |
+
"1950-08",
|
249 |
+
"1950-09",
|
250 |
+
"1950-10",
|
251 |
+
"1950-11",
|
252 |
+
"1950-12",
|
253 |
+
"1951-01",
|
254 |
+
"1951-02",
|
255 |
+
"1951-03",
|
256 |
+
"1951-04",
|
257 |
+
"1951-05",
|
258 |
+
"1951-06",
|
259 |
+
"1951-07",
|
260 |
+
"1951-08",
|
261 |
+
"1951-09",
|
262 |
+
"1951-10",
|
263 |
+
"1951-11",
|
264 |
+
"1951-12",
|
265 |
+
"1952-01",
|
266 |
+
"1952-02",
|
267 |
+
"1952-03",
|
268 |
+
"1952-04",
|
269 |
+
"1952-05",
|
270 |
+
"1952-06",
|
271 |
+
"1952-07",
|
272 |
+
"1952-08",
|
273 |
+
"1952-09",
|
274 |
+
"1952-10",
|
275 |
+
"1952-11",
|
276 |
+
"1952-12",
|
277 |
+
"1953-01",
|
278 |
+
"1953-02",
|
279 |
+
"1953-03",
|
280 |
+
"1953-04",
|
281 |
+
"1953-05",
|
282 |
+
"1953-06",
|
283 |
+
"1953-07",
|
284 |
+
"1953-08",
|
285 |
+
"1953-09",
|
286 |
+
"1953-10",
|
287 |
+
"1953-11",
|
288 |
+
"1953-12",
|
289 |
+
"1954-01",
|
290 |
+
"1954-02",
|
291 |
+
"1954-03",
|
292 |
+
"1954-04",
|
293 |
+
"1954-05",
|
294 |
+
"1954-06",
|
295 |
+
"1954-07",
|
296 |
+
"1954-08",
|
297 |
+
"1954-09",
|
298 |
+
"1954-10",
|
299 |
+
"1954-11",
|
300 |
+
"1954-12",
|
301 |
+
"1955-01",
|
302 |
+
"1955-02",
|
303 |
+
"1955-03",
|
304 |
+
"1955-04",
|
305 |
+
"1955-05",
|
306 |
+
"1955-06",
|
307 |
+
"1955-07",
|
308 |
+
"1955-08",
|
309 |
+
"1955-09",
|
310 |
+
"1955-10",
|
311 |
+
"1955-11",
|
312 |
+
"1955-12",
|
313 |
+
"1956-01",
|
314 |
+
"1956-02",
|
315 |
+
"1956-03",
|
316 |
+
"1956-04",
|
317 |
+
"1956-05",
|
318 |
+
"1956-06",
|
319 |
+
"1956-07",
|
320 |
+
"1956-08",
|
321 |
+
"1956-09",
|
322 |
+
"1956-10",
|
323 |
+
"1956-11",
|
324 |
+
"1956-12",
|
325 |
+
"1957-01",
|
326 |
+
"1957-02",
|
327 |
+
"1957-03",
|
328 |
+
"1957-04",
|
329 |
+
"1957-05",
|
330 |
+
"1957-06",
|
331 |
+
"1957-07",
|
332 |
+
"1957-08",
|
333 |
+
"1957-09",
|
334 |
+
"1957-10",
|
335 |
+
"1957-11",
|
336 |
+
"1957-12",
|
337 |
+
"1958-01",
|
338 |
+
"1958-02",
|
339 |
+
"1958-03",
|
340 |
+
"1958-04",
|
341 |
+
"1958-05",
|
342 |
+
"1958-06",
|
343 |
+
"1958-07",
|
344 |
+
"1958-08",
|
345 |
+
"1958-09",
|
346 |
+
"1958-10",
|
347 |
+
"1958-11",
|
348 |
+
"1958-12",
|
349 |
+
"1959-01",
|
350 |
+
"1959-02",
|
351 |
+
"1959-03",
|
352 |
+
"1959-04",
|
353 |
+
"1959-05",
|
354 |
+
"1959-06",
|
355 |
+
"1959-07",
|
356 |
+
"1959-08",
|
357 |
+
"1959-09",
|
358 |
+
"1959-10",
|
359 |
+
"1959-11",
|
360 |
+
"1959-12",
|
361 |
+
"1960-01",
|
362 |
+
"1960-02",
|
363 |
+
"1960-03",
|
364 |
+
"1960-04",
|
365 |
+
"1960-05",
|
366 |
+
"1960-06",
|
367 |
+
"1960-07",
|
368 |
+
"1960-08",
|
369 |
+
"1960-09",
|
370 |
+
"1960-10",
|
371 |
+
"1960-11",
|
372 |
+
"1960-12"
|
373 |
+
],
|
374 |
+
"xaxis": "x",
|
375 |
+
"y": [
|
376 |
+
112,
|
377 |
+
118,
|
378 |
+
132,
|
379 |
+
129,
|
380 |
+
121,
|
381 |
+
135,
|
382 |
+
148,
|
383 |
+
148,
|
384 |
+
136,
|
385 |
+
119,
|
386 |
+
104,
|
387 |
+
118,
|
388 |
+
115,
|
389 |
+
126,
|
390 |
+
141,
|
391 |
+
135,
|
392 |
+
125,
|
393 |
+
149,
|
394 |
+
170,
|
395 |
+
170,
|
396 |
+
158,
|
397 |
+
133,
|
398 |
+
114,
|
399 |
+
140,
|
400 |
+
145,
|
401 |
+
150,
|
402 |
+
178,
|
403 |
+
163,
|
404 |
+
172,
|
405 |
+
178,
|
406 |
+
199,
|
407 |
+
199,
|
408 |
+
184,
|
409 |
+
162,
|
410 |
+
146,
|
411 |
+
166,
|
412 |
+
171,
|
413 |
+
180,
|
414 |
+
193,
|
415 |
+
181,
|
416 |
+
183,
|
417 |
+
218,
|
418 |
+
230,
|
419 |
+
242,
|
420 |
+
209,
|
421 |
+
191,
|
422 |
+
172,
|
423 |
+
194,
|
424 |
+
196,
|
425 |
+
196,
|
426 |
+
236,
|
427 |
+
235,
|
428 |
+
229,
|
429 |
+
243,
|
430 |
+
264,
|
431 |
+
272,
|
432 |
+
237,
|
433 |
+
211,
|
434 |
+
180,
|
435 |
+
201,
|
436 |
+
204,
|
437 |
+
188,
|
438 |
+
235,
|
439 |
+
227,
|
440 |
+
234,
|
441 |
+
264,
|
442 |
+
302,
|
443 |
+
293,
|
444 |
+
259,
|
445 |
+
229,
|
446 |
+
203,
|
447 |
+
229,
|
448 |
+
242,
|
449 |
+
233,
|
450 |
+
267,
|
451 |
+
269,
|
452 |
+
270,
|
453 |
+
315,
|
454 |
+
364,
|
455 |
+
347,
|
456 |
+
312,
|
457 |
+
274,
|
458 |
+
237,
|
459 |
+
278,
|
460 |
+
284,
|
461 |
+
277,
|
462 |
+
317,
|
463 |
+
313,
|
464 |
+
318,
|
465 |
+
374,
|
466 |
+
413,
|
467 |
+
405,
|
468 |
+
355,
|
469 |
+
306,
|
470 |
+
271,
|
471 |
+
306,
|
472 |
+
315,
|
473 |
+
301,
|
474 |
+
356,
|
475 |
+
348,
|
476 |
+
355,
|
477 |
+
422,
|
478 |
+
465,
|
479 |
+
467,
|
480 |
+
404,
|
481 |
+
347,
|
482 |
+
305,
|
483 |
+
336,
|
484 |
+
340,
|
485 |
+
318,
|
486 |
+
362,
|
487 |
+
348,
|
488 |
+
363,
|
489 |
+
435,
|
490 |
+
491,
|
491 |
+
505,
|
492 |
+
404,
|
493 |
+
359,
|
494 |
+
310,
|
495 |
+
337,
|
496 |
+
360,
|
497 |
+
342,
|
498 |
+
406,
|
499 |
+
396,
|
500 |
+
420,
|
501 |
+
472,
|
502 |
+
548,
|
503 |
+
559,
|
504 |
+
463,
|
505 |
+
407,
|
506 |
+
362,
|
507 |
+
405,
|
508 |
+
417,
|
509 |
+
391,
|
510 |
+
419,
|
511 |
+
461,
|
512 |
+
472,
|
513 |
+
535,
|
514 |
+
622,
|
515 |
+
606,
|
516 |
+
508,
|
517 |
+
461,
|
518 |
+
390,
|
519 |
+
432
|
520 |
+
],
|
521 |
+
"yaxis": "y"
|
522 |
+
}
|
523 |
+
],
|
524 |
+
"layout": {
|
525 |
+
"legend": {
|
526 |
+
"tracegroupgap": 0
|
527 |
+
},
|
528 |
+
"margin": {
|
529 |
+
"t": 60
|
530 |
+
},
|
531 |
+
"template": {
|
532 |
+
"data": {
|
533 |
+
"bar": [
|
534 |
+
{
|
535 |
+
"error_x": {
|
536 |
+
"color": "#2a3f5f"
|
537 |
+
},
|
538 |
+
"error_y": {
|
539 |
+
"color": "#2a3f5f"
|
540 |
+
},
|
541 |
+
"marker": {
|
542 |
+
"line": {
|
543 |
+
"color": "#E5ECF6",
|
544 |
+
"width": 0.5
|
545 |
+
},
|
546 |
+
"pattern": {
|
547 |
+
"fillmode": "overlay",
|
548 |
+
"size": 10,
|
549 |
+
"solidity": 0.2
|
550 |
+
}
|
551 |
+
},
|
552 |
+
"type": "bar"
|
553 |
+
}
|
554 |
+
],
|
555 |
+
"barpolar": [
|
556 |
+
{
|
557 |
+
"marker": {
|
558 |
+
"line": {
|
559 |
+
"color": "#E5ECF6",
|
560 |
+
"width": 0.5
|
561 |
+
},
|
562 |
+
"pattern": {
|
563 |
+
"fillmode": "overlay",
|
564 |
+
"size": 10,
|
565 |
+
"solidity": 0.2
|
566 |
+
}
|
567 |
+
},
|
568 |
+
"type": "barpolar"
|
569 |
+
}
|
570 |
+
],
|
571 |
+
"carpet": [
|
572 |
+
{
|
573 |
+
"aaxis": {
|
574 |
+
"endlinecolor": "#2a3f5f",
|
575 |
+
"gridcolor": "white",
|
576 |
+
"linecolor": "white",
|
577 |
+
"minorgridcolor": "white",
|
578 |
+
"startlinecolor": "#2a3f5f"
|
579 |
+
},
|
580 |
+
"baxis": {
|
581 |
+
"endlinecolor": "#2a3f5f",
|
582 |
+
"gridcolor": "white",
|
583 |
+
"linecolor": "white",
|
584 |
+
"minorgridcolor": "white",
|
585 |
+
"startlinecolor": "#2a3f5f"
|
586 |
+
},
|
587 |
+
"type": "carpet"
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"choropleth": [
|
591 |
+
{
|
592 |
+
"colorbar": {
|
593 |
+
"outlinewidth": 0,
|
594 |
+
"ticks": ""
|
595 |
+
},
|
596 |
+
"type": "choropleth"
|
597 |
+
}
|
598 |
+
],
|
599 |
+
"contour": [
|
600 |
+
{
|
601 |
+
"colorbar": {
|
602 |
+
"outlinewidth": 0,
|
603 |
+
"ticks": ""
|
604 |
+
},
|
605 |
+
"colorscale": [
|
606 |
+
[
|
607 |
+
0,
|
608 |
+
"#0d0887"
|
609 |
+
],
|
610 |
+
[
|
611 |
+
0.1111111111111111,
|
612 |
+
"#46039f"
|
613 |
+
],
|
614 |
+
[
|
615 |
+
0.2222222222222222,
|
616 |
+
"#7201a8"
|
617 |
+
],
|
618 |
+
[
|
619 |
+
0.3333333333333333,
|
620 |
+
"#9c179e"
|
621 |
+
],
|
622 |
+
[
|
623 |
+
0.4444444444444444,
|
624 |
+
"#bd3786"
|
625 |
+
],
|
626 |
+
[
|
627 |
+
0.5555555555555556,
|
628 |
+
"#d8576b"
|
629 |
+
],
|
630 |
+
[
|
631 |
+
0.6666666666666666,
|
632 |
+
"#ed7953"
|
633 |
+
],
|
634 |
+
[
|
635 |
+
0.7777777777777778,
|
636 |
+
"#fb9f3a"
|
637 |
+
],
|
638 |
+
[
|
639 |
+
0.8888888888888888,
|
640 |
+
"#fdca26"
|
641 |
+
],
|
642 |
+
[
|
643 |
+
1,
|
644 |
+
"#f0f921"
|
645 |
+
]
|
646 |
+
],
|
647 |
+
"type": "contour"
|
648 |
+
}
|
649 |
+
],
|
650 |
+
"contourcarpet": [
|
651 |
+
{
|
652 |
+
"colorbar": {
|
653 |
+
"outlinewidth": 0,
|
654 |
+
"ticks": ""
|
655 |
+
},
|
656 |
+
"type": "contourcarpet"
|
657 |
+
}
|
658 |
+
],
|
659 |
+
"heatmap": [
|
660 |
+
{
|
661 |
+
"colorbar": {
|
662 |
+
"outlinewidth": 0,
|
663 |
+
"ticks": ""
|
664 |
+
},
|
665 |
+
"colorscale": [
|
666 |
+
[
|
667 |
+
0,
|
668 |
+
"#0d0887"
|
669 |
+
],
|
670 |
+
[
|
671 |
+
0.1111111111111111,
|
672 |
+
"#46039f"
|
673 |
+
],
|
674 |
+
[
|
675 |
+
0.2222222222222222,
|
676 |
+
"#7201a8"
|
677 |
+
],
|
678 |
+
[
|
679 |
+
0.3333333333333333,
|
680 |
+
"#9c179e"
|
681 |
+
],
|
682 |
+
[
|
683 |
+
0.4444444444444444,
|
684 |
+
"#bd3786"
|
685 |
+
],
|
686 |
+
[
|
687 |
+
0.5555555555555556,
|
688 |
+
"#d8576b"
|
689 |
+
],
|
690 |
+
[
|
691 |
+
0.6666666666666666,
|
692 |
+
"#ed7953"
|
693 |
+
],
|
694 |
+
[
|
695 |
+
0.7777777777777778,
|
696 |
+
"#fb9f3a"
|
697 |
+
],
|
698 |
+
[
|
699 |
+
0.8888888888888888,
|
700 |
+
"#fdca26"
|
701 |
+
],
|
702 |
+
[
|
703 |
+
1,
|
704 |
+
"#f0f921"
|
705 |
+
]
|
706 |
+
],
|
707 |
+
"type": "heatmap"
|
708 |
+
}
|
709 |
+
],
|
710 |
+
"heatmapgl": [
|
711 |
+
{
|
712 |
+
"colorbar": {
|
713 |
+
"outlinewidth": 0,
|
714 |
+
"ticks": ""
|
715 |
+
},
|
716 |
+
"colorscale": [
|
717 |
+
[
|
718 |
+
0,
|
719 |
+
"#0d0887"
|
720 |
+
],
|
721 |
+
[
|
722 |
+
0.1111111111111111,
|
723 |
+
"#46039f"
|
724 |
+
],
|
725 |
+
[
|
726 |
+
0.2222222222222222,
|
727 |
+
"#7201a8"
|
728 |
+
],
|
729 |
+
[
|
730 |
+
0.3333333333333333,
|
731 |
+
"#9c179e"
|
732 |
+
],
|
733 |
+
[
|
734 |
+
0.4444444444444444,
|
735 |
+
"#bd3786"
|
736 |
+
],
|
737 |
+
[
|
738 |
+
0.5555555555555556,
|
739 |
+
"#d8576b"
|
740 |
+
],
|
741 |
+
[
|
742 |
+
0.6666666666666666,
|
743 |
+
"#ed7953"
|
744 |
+
],
|
745 |
+
[
|
746 |
+
0.7777777777777778,
|
747 |
+
"#fb9f3a"
|
748 |
+
],
|
749 |
+
[
|
750 |
+
0.8888888888888888,
|
751 |
+
"#fdca26"
|
752 |
+
],
|
753 |
+
[
|
754 |
+
1,
|
755 |
+
"#f0f921"
|
756 |
+
]
|
757 |
+
],
|
758 |
+
"type": "heatmapgl"
|
759 |
+
}
|
760 |
+
],
|
761 |
+
"histogram": [
|
762 |
+
{
|
763 |
+
"marker": {
|
764 |
+
"pattern": {
|
765 |
+
"fillmode": "overlay",
|
766 |
+
"size": 10,
|
767 |
+
"solidity": 0.2
|
768 |
+
}
|
769 |
+
},
|
770 |
+
"type": "histogram"
|
771 |
+
}
|
772 |
+
],
|
773 |
+
"histogram2d": [
|
774 |
+
{
|
775 |
+
"colorbar": {
|
776 |
+
"outlinewidth": 0,
|
777 |
+
"ticks": ""
|
778 |
+
},
|
779 |
+
"colorscale": [
|
780 |
+
[
|
781 |
+
0,
|
782 |
+
"#0d0887"
|
783 |
+
],
|
784 |
+
[
|
785 |
+
0.1111111111111111,
|
786 |
+
"#46039f"
|
787 |
+
],
|
788 |
+
[
|
789 |
+
0.2222222222222222,
|
790 |
+
"#7201a8"
|
791 |
+
],
|
792 |
+
[
|
793 |
+
0.3333333333333333,
|
794 |
+
"#9c179e"
|
795 |
+
],
|
796 |
+
[
|
797 |
+
0.4444444444444444,
|
798 |
+
"#bd3786"
|
799 |
+
],
|
800 |
+
[
|
801 |
+
0.5555555555555556,
|
802 |
+
"#d8576b"
|
803 |
+
],
|
804 |
+
[
|
805 |
+
0.6666666666666666,
|
806 |
+
"#ed7953"
|
807 |
+
],
|
808 |
+
[
|
809 |
+
0.7777777777777778,
|
810 |
+
"#fb9f3a"
|
811 |
+
],
|
812 |
+
[
|
813 |
+
0.8888888888888888,
|
814 |
+
"#fdca26"
|
815 |
+
],
|
816 |
+
[
|
817 |
+
1,
|
818 |
+
"#f0f921"
|
819 |
+
]
|
820 |
+
],
|
821 |
+
"type": "histogram2d"
|
822 |
+
}
|
823 |
+
],
|
824 |
+
"histogram2dcontour": [
|
825 |
+
{
|
826 |
+
"colorbar": {
|
827 |
+
"outlinewidth": 0,
|
828 |
+
"ticks": ""
|
829 |
+
},
|
830 |
+
"colorscale": [
|
831 |
+
[
|
832 |
+
0,
|
833 |
+
"#0d0887"
|
834 |
+
],
|
835 |
+
[
|
836 |
+
0.1111111111111111,
|
837 |
+
"#46039f"
|
838 |
+
],
|
839 |
+
[
|
840 |
+
0.2222222222222222,
|
841 |
+
"#7201a8"
|
842 |
+
],
|
843 |
+
[
|
844 |
+
0.3333333333333333,
|
845 |
+
"#9c179e"
|
846 |
+
],
|
847 |
+
[
|
848 |
+
0.4444444444444444,
|
849 |
+
"#bd3786"
|
850 |
+
],
|
851 |
+
[
|
852 |
+
0.5555555555555556,
|
853 |
+
"#d8576b"
|
854 |
+
],
|
855 |
+
[
|
856 |
+
0.6666666666666666,
|
857 |
+
"#ed7953"
|
858 |
+
],
|
859 |
+
[
|
860 |
+
0.7777777777777778,
|
861 |
+
"#fb9f3a"
|
862 |
+
],
|
863 |
+
[
|
864 |
+
0.8888888888888888,
|
865 |
+
"#fdca26"
|
866 |
+
],
|
867 |
+
[
|
868 |
+
1,
|
869 |
+
"#f0f921"
|
870 |
+
]
|
871 |
+
],
|
872 |
+
"type": "histogram2dcontour"
|
873 |
+
}
|
874 |
+
],
|
875 |
+
"mesh3d": [
|
876 |
+
{
|
877 |
+
"colorbar": {
|
878 |
+
"outlinewidth": 0,
|
879 |
+
"ticks": ""
|
880 |
+
},
|
881 |
+
"type": "mesh3d"
|
882 |
+
}
|
883 |
+
],
|
884 |
+
"parcoords": [
|
885 |
+
{
|
886 |
+
"line": {
|
887 |
+
"colorbar": {
|
888 |
+
"outlinewidth": 0,
|
889 |
+
"ticks": ""
|
890 |
+
}
|
891 |
+
},
|
892 |
+
"type": "parcoords"
|
893 |
+
}
|
894 |
+
],
|
895 |
+
"pie": [
|
896 |
+
{
|
897 |
+
"automargin": true,
|
898 |
+
"type": "pie"
|
899 |
+
}
|
900 |
+
],
|
901 |
+
"scatter": [
|
902 |
+
{
|
903 |
+
"fillpattern": {
|
904 |
+
"fillmode": "overlay",
|
905 |
+
"size": 10,
|
906 |
+
"solidity": 0.2
|
907 |
+
},
|
908 |
+
"type": "scatter"
|
909 |
+
}
|
910 |
+
],
|
911 |
+
"scatter3d": [
|
912 |
+
{
|
913 |
+
"line": {
|
914 |
+
"colorbar": {
|
915 |
+
"outlinewidth": 0,
|
916 |
+
"ticks": ""
|
917 |
+
}
|
918 |
+
},
|
919 |
+
"marker": {
|
920 |
+
"colorbar": {
|
921 |
+
"outlinewidth": 0,
|
922 |
+
"ticks": ""
|
923 |
+
}
|
924 |
+
},
|
925 |
+
"type": "scatter3d"
|
926 |
+
}
|
927 |
+
],
|
928 |
+
"scattercarpet": [
|
929 |
+
{
|
930 |
+
"marker": {
|
931 |
+
"colorbar": {
|
932 |
+
"outlinewidth": 0,
|
933 |
+
"ticks": ""
|
934 |
+
}
|
935 |
+
},
|
936 |
+
"type": "scattercarpet"
|
937 |
+
}
|
938 |
+
],
|
939 |
+
"scattergeo": [
|
940 |
+
{
|
941 |
+
"marker": {
|
942 |
+
"colorbar": {
|
943 |
+
"outlinewidth": 0,
|
944 |
+
"ticks": ""
|
945 |
+
}
|
946 |
+
},
|
947 |
+
"type": "scattergeo"
|
948 |
+
}
|
949 |
+
],
|
950 |
+
"scattergl": [
|
951 |
+
{
|
952 |
+
"marker": {
|
953 |
+
"colorbar": {
|
954 |
+
"outlinewidth": 0,
|
955 |
+
"ticks": ""
|
956 |
+
}
|
957 |
+
},
|
958 |
+
"type": "scattergl"
|
959 |
+
}
|
960 |
+
],
|
961 |
+
"scattermapbox": [
|
962 |
+
{
|
963 |
+
"marker": {
|
964 |
+
"colorbar": {
|
965 |
+
"outlinewidth": 0,
|
966 |
+
"ticks": ""
|
967 |
+
}
|
968 |
+
},
|
969 |
+
"type": "scattermapbox"
|
970 |
+
}
|
971 |
+
],
|
972 |
+
"scatterpolar": [
|
973 |
+
{
|
974 |
+
"marker": {
|
975 |
+
"colorbar": {
|
976 |
+
"outlinewidth": 0,
|
977 |
+
"ticks": ""
|
978 |
+
}
|
979 |
+
},
|
980 |
+
"type": "scatterpolar"
|
981 |
+
}
|
982 |
+
],
|
983 |
+
"scatterpolargl": [
|
984 |
+
{
|
985 |
+
"marker": {
|
986 |
+
"colorbar": {
|
987 |
+
"outlinewidth": 0,
|
988 |
+
"ticks": ""
|
989 |
+
}
|
990 |
+
},
|
991 |
+
"type": "scatterpolargl"
|
992 |
+
}
|
993 |
+
],
|
994 |
+
"scatterternary": [
|
995 |
+
{
|
996 |
+
"marker": {
|
997 |
+
"colorbar": {
|
998 |
+
"outlinewidth": 0,
|
999 |
+
"ticks": ""
|
1000 |
+
}
|
1001 |
+
},
|
1002 |
+
"type": "scatterternary"
|
1003 |
+
}
|
1004 |
+
],
|
1005 |
+
"surface": [
|
1006 |
+
{
|
1007 |
+
"colorbar": {
|
1008 |
+
"outlinewidth": 0,
|
1009 |
+
"ticks": ""
|
1010 |
+
},
|
1011 |
+
"colorscale": [
|
1012 |
+
[
|
1013 |
+
0,
|
1014 |
+
"#0d0887"
|
1015 |
+
],
|
1016 |
+
[
|
1017 |
+
0.1111111111111111,
|
1018 |
+
"#46039f"
|
1019 |
+
],
|
1020 |
+
[
|
1021 |
+
0.2222222222222222,
|
1022 |
+
"#7201a8"
|
1023 |
+
],
|
1024 |
+
[
|
1025 |
+
0.3333333333333333,
|
1026 |
+
"#9c179e"
|
1027 |
+
],
|
1028 |
+
[
|
1029 |
+
0.4444444444444444,
|
1030 |
+
"#bd3786"
|
1031 |
+
],
|
1032 |
+
[
|
1033 |
+
0.5555555555555556,
|
1034 |
+
"#d8576b"
|
1035 |
+
],
|
1036 |
+
[
|
1037 |
+
0.6666666666666666,
|
1038 |
+
"#ed7953"
|
1039 |
+
],
|
1040 |
+
[
|
1041 |
+
0.7777777777777778,
|
1042 |
+
"#fb9f3a"
|
1043 |
+
],
|
1044 |
+
[
|
1045 |
+
0.8888888888888888,
|
1046 |
+
"#fdca26"
|
1047 |
+
],
|
1048 |
+
[
|
1049 |
+
1,
|
1050 |
+
"#f0f921"
|
1051 |
+
]
|
1052 |
+
],
|
1053 |
+
"type": "surface"
|
1054 |
+
}
|
1055 |
+
],
|
1056 |
+
"table": [
|
1057 |
+
{
|
1058 |
+
"cells": {
|
1059 |
+
"fill": {
|
1060 |
+
"color": "#EBF0F8"
|
1061 |
+
},
|
1062 |
+
"line": {
|
1063 |
+
"color": "white"
|
1064 |
+
}
|
1065 |
+
},
|
1066 |
+
"header": {
|
1067 |
+
"fill": {
|
1068 |
+
"color": "#C8D4E3"
|
1069 |
+
},
|
1070 |
+
"line": {
|
1071 |
+
"color": "white"
|
1072 |
+
}
|
1073 |
+
},
|
1074 |
+
"type": "table"
|
1075 |
+
}
|
1076 |
+
]
|
1077 |
+
},
|
1078 |
+
"layout": {
|
1079 |
+
"annotationdefaults": {
|
1080 |
+
"arrowcolor": "#2a3f5f",
|
1081 |
+
"arrowhead": 0,
|
1082 |
+
"arrowwidth": 1
|
1083 |
+
},
|
1084 |
+
"autotypenumbers": "strict",
|
1085 |
+
"coloraxis": {
|
1086 |
+
"colorbar": {
|
1087 |
+
"outlinewidth": 0,
|
1088 |
+
"ticks": ""
|
1089 |
+
}
|
1090 |
+
},
|
1091 |
+
"colorscale": {
|
1092 |
+
"diverging": [
|
1093 |
+
[
|
1094 |
+
0,
|
1095 |
+
"#8e0152"
|
1096 |
+
],
|
1097 |
+
[
|
1098 |
+
0.1,
|
1099 |
+
"#c51b7d"
|
1100 |
+
],
|
1101 |
+
[
|
1102 |
+
0.2,
|
1103 |
+
"#de77ae"
|
1104 |
+
],
|
1105 |
+
[
|
1106 |
+
0.3,
|
1107 |
+
"#f1b6da"
|
1108 |
+
],
|
1109 |
+
[
|
1110 |
+
0.4,
|
1111 |
+
"#fde0ef"
|
1112 |
+
],
|
1113 |
+
[
|
1114 |
+
0.5,
|
1115 |
+
"#f7f7f7"
|
1116 |
+
],
|
1117 |
+
[
|
1118 |
+
0.6,
|
1119 |
+
"#e6f5d0"
|
1120 |
+
],
|
1121 |
+
[
|
1122 |
+
0.7,
|
1123 |
+
"#b8e186"
|
1124 |
+
],
|
1125 |
+
[
|
1126 |
+
0.8,
|
1127 |
+
"#7fbc41"
|
1128 |
+
],
|
1129 |
+
[
|
1130 |
+
0.9,
|
1131 |
+
"#4d9221"
|
1132 |
+
],
|
1133 |
+
[
|
1134 |
+
1,
|
1135 |
+
"#276419"
|
1136 |
+
]
|
1137 |
+
],
|
1138 |
+
"sequential": [
|
1139 |
+
[
|
1140 |
+
0,
|
1141 |
+
"#0d0887"
|
1142 |
+
],
|
1143 |
+
[
|
1144 |
+
0.1111111111111111,
|
1145 |
+
"#46039f"
|
1146 |
+
],
|
1147 |
+
[
|
1148 |
+
0.2222222222222222,
|
1149 |
+
"#7201a8"
|
1150 |
+
],
|
1151 |
+
[
|
1152 |
+
0.3333333333333333,
|
1153 |
+
"#9c179e"
|
1154 |
+
],
|
1155 |
+
[
|
1156 |
+
0.4444444444444444,
|
1157 |
+
"#bd3786"
|
1158 |
+
],
|
1159 |
+
[
|
1160 |
+
0.5555555555555556,
|
1161 |
+
"#d8576b"
|
1162 |
+
],
|
1163 |
+
[
|
1164 |
+
0.6666666666666666,
|
1165 |
+
"#ed7953"
|
1166 |
+
],
|
1167 |
+
[
|
1168 |
+
0.7777777777777778,
|
1169 |
+
"#fb9f3a"
|
1170 |
+
],
|
1171 |
+
[
|
1172 |
+
0.8888888888888888,
|
1173 |
+
"#fdca26"
|
1174 |
+
],
|
1175 |
+
[
|
1176 |
+
1,
|
1177 |
+
"#f0f921"
|
1178 |
+
]
|
1179 |
+
],
|
1180 |
+
"sequentialminus": [
|
1181 |
+
[
|
1182 |
+
0,
|
1183 |
+
"#0d0887"
|
1184 |
+
],
|
1185 |
+
[
|
1186 |
+
0.1111111111111111,
|
1187 |
+
"#46039f"
|
1188 |
+
],
|
1189 |
+
[
|
1190 |
+
0.2222222222222222,
|
1191 |
+
"#7201a8"
|
1192 |
+
],
|
1193 |
+
[
|
1194 |
+
0.3333333333333333,
|
1195 |
+
"#9c179e"
|
1196 |
+
],
|
1197 |
+
[
|
1198 |
+
0.4444444444444444,
|
1199 |
+
"#bd3786"
|
1200 |
+
],
|
1201 |
+
[
|
1202 |
+
0.5555555555555556,
|
1203 |
+
"#d8576b"
|
1204 |
+
],
|
1205 |
+
[
|
1206 |
+
0.6666666666666666,
|
1207 |
+
"#ed7953"
|
1208 |
+
],
|
1209 |
+
[
|
1210 |
+
0.7777777777777778,
|
1211 |
+
"#fb9f3a"
|
1212 |
+
],
|
1213 |
+
[
|
1214 |
+
0.8888888888888888,
|
1215 |
+
"#fdca26"
|
1216 |
+
],
|
1217 |
+
[
|
1218 |
+
1,
|
1219 |
+
"#f0f921"
|
1220 |
+
]
|
1221 |
+
]
|
1222 |
+
},
|
1223 |
+
"colorway": [
|
1224 |
+
"#636efa",
|
1225 |
+
"#EF553B",
|
1226 |
+
"#00cc96",
|
1227 |
+
"#ab63fa",
|
1228 |
+
"#FFA15A",
|
1229 |
+
"#19d3f3",
|
1230 |
+
"#FF6692",
|
1231 |
+
"#B6E880",
|
1232 |
+
"#FF97FF",
|
1233 |
+
"#FECB52"
|
1234 |
+
],
|
1235 |
+
"font": {
|
1236 |
+
"color": "#2a3f5f"
|
1237 |
+
},
|
1238 |
+
"geo": {
|
1239 |
+
"bgcolor": "white",
|
1240 |
+
"lakecolor": "white",
|
1241 |
+
"landcolor": "#E5ECF6",
|
1242 |
+
"showlakes": true,
|
1243 |
+
"showland": true,
|
1244 |
+
"subunitcolor": "white"
|
1245 |
+
},
|
1246 |
+
"hoverlabel": {
|
1247 |
+
"align": "left"
|
1248 |
+
},
|
1249 |
+
"hovermode": "closest",
|
1250 |
+
"mapbox": {
|
1251 |
+
"style": "light"
|
1252 |
+
},
|
1253 |
+
"paper_bgcolor": "white",
|
1254 |
+
"plot_bgcolor": "#E5ECF6",
|
1255 |
+
"polar": {
|
1256 |
+
"angularaxis": {
|
1257 |
+
"gridcolor": "white",
|
1258 |
+
"linecolor": "white",
|
1259 |
+
"ticks": ""
|
1260 |
+
},
|
1261 |
+
"bgcolor": "#E5ECF6",
|
1262 |
+
"radialaxis": {
|
1263 |
+
"gridcolor": "white",
|
1264 |
+
"linecolor": "white",
|
1265 |
+
"ticks": ""
|
1266 |
+
}
|
1267 |
+
},
|
1268 |
+
"scene": {
|
1269 |
+
"xaxis": {
|
1270 |
+
"backgroundcolor": "#E5ECF6",
|
1271 |
+
"gridcolor": "white",
|
1272 |
+
"gridwidth": 2,
|
1273 |
+
"linecolor": "white",
|
1274 |
+
"showbackground": true,
|
1275 |
+
"ticks": "",
|
1276 |
+
"zerolinecolor": "white"
|
1277 |
+
},
|
1278 |
+
"yaxis": {
|
1279 |
+
"backgroundcolor": "#E5ECF6",
|
1280 |
+
"gridcolor": "white",
|
1281 |
+
"gridwidth": 2,
|
1282 |
+
"linecolor": "white",
|
1283 |
+
"showbackground": true,
|
1284 |
+
"ticks": "",
|
1285 |
+
"zerolinecolor": "white"
|
1286 |
+
},
|
1287 |
+
"zaxis": {
|
1288 |
+
"backgroundcolor": "#E5ECF6",
|
1289 |
+
"gridcolor": "white",
|
1290 |
+
"gridwidth": 2,
|
1291 |
+
"linecolor": "white",
|
1292 |
+
"showbackground": true,
|
1293 |
+
"ticks": "",
|
1294 |
+
"zerolinecolor": "white"
|
1295 |
+
}
|
1296 |
+
},
|
1297 |
+
"shapedefaults": {
|
1298 |
+
"line": {
|
1299 |
+
"color": "#2a3f5f"
|
1300 |
+
}
|
1301 |
+
},
|
1302 |
+
"ternary": {
|
1303 |
+
"aaxis": {
|
1304 |
+
"gridcolor": "white",
|
1305 |
+
"linecolor": "white",
|
1306 |
+
"ticks": ""
|
1307 |
+
},
|
1308 |
+
"baxis": {
|
1309 |
+
"gridcolor": "white",
|
1310 |
+
"linecolor": "white",
|
1311 |
+
"ticks": ""
|
1312 |
+
},
|
1313 |
+
"bgcolor": "#E5ECF6",
|
1314 |
+
"caxis": {
|
1315 |
+
"gridcolor": "white",
|
1316 |
+
"linecolor": "white",
|
1317 |
+
"ticks": ""
|
1318 |
+
}
|
1319 |
+
},
|
1320 |
+
"title": {
|
1321 |
+
"x": 0.05
|
1322 |
+
},
|
1323 |
+
"xaxis": {
|
1324 |
+
"automargin": true,
|
1325 |
+
"gridcolor": "white",
|
1326 |
+
"linecolor": "white",
|
1327 |
+
"ticks": "",
|
1328 |
+
"title": {
|
1329 |
+
"standoff": 15
|
1330 |
+
},
|
1331 |
+
"zerolinecolor": "white",
|
1332 |
+
"zerolinewidth": 2
|
1333 |
+
},
|
1334 |
+
"yaxis": {
|
1335 |
+
"automargin": true,
|
1336 |
+
"gridcolor": "white",
|
1337 |
+
"linecolor": "white",
|
1338 |
+
"ticks": "",
|
1339 |
+
"title": {
|
1340 |
+
"standoff": 15
|
1341 |
+
},
|
1342 |
+
"zerolinecolor": "white",
|
1343 |
+
"zerolinewidth": 2
|
1344 |
+
}
|
1345 |
+
}
|
1346 |
+
},
|
1347 |
+
"xaxis": {
|
1348 |
+
"anchor": "y",
|
1349 |
+
"domain": [
|
1350 |
+
0,
|
1351 |
+
1
|
1352 |
+
],
|
1353 |
+
"title": {
|
1354 |
+
"text": "Date"
|
1355 |
+
}
|
1356 |
+
},
|
1357 |
+
"yaxis": {
|
1358 |
+
"anchor": "x",
|
1359 |
+
"domain": [
|
1360 |
+
0,
|
1361 |
+
1
|
1362 |
+
],
|
1363 |
+
"title": {
|
1364 |
+
"text": "Passengers"
|
1365 |
+
}
|
1366 |
+
}
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
},
|
1370 |
+
"metadata": {},
|
1371 |
+
"output_type": "display_data"
|
1372 |
+
}
|
1373 |
+
],
|
1374 |
+
"source": [
|
1375 |
+
"fig"
|
1376 |
+
]
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"cell_type": "code",
|
1380 |
+
"execution_count": 7,
|
1381 |
+
"metadata": {},
|
1382 |
+
"outputs": [
|
1383 |
+
{
|
1384 |
+
"data": {
|
1385 |
+
"application/vnd.plotly.v1+json": {
|
1386 |
+
"config": {
|
1387 |
+
"plotlyServerURL": "https://plot.ly"
|
1388 |
+
},
|
1389 |
+
"data": [
|
1390 |
+
{
|
1391 |
+
"hovertemplate": "Date=%{x}<br>Passengers=%{y}<extra></extra>",
|
1392 |
+
"legendgroup": "",
|
1393 |
+
"line": {
|
1394 |
+
"color": "#636efa",
|
1395 |
+
"dash": "solid"
|
1396 |
+
},
|
1397 |
+
"marker": {
|
1398 |
+
"symbol": "circle"
|
1399 |
+
},
|
1400 |
+
"mode": "lines",
|
1401 |
+
"name": "",
|
1402 |
+
"orientation": "v",
|
1403 |
+
"showlegend": false,
|
1404 |
+
"type": "scatter",
|
1405 |
+
"x": [
|
1406 |
+
"1949-01",
|
1407 |
+
"1949-02",
|
1408 |
+
"1949-03",
|
1409 |
+
"1949-04",
|
1410 |
+
"1949-05",
|
1411 |
+
"1949-06",
|
1412 |
+
"1949-07",
|
1413 |
+
"1949-08",
|
1414 |
+
"1949-09",
|
1415 |
+
"1949-10",
|
1416 |
+
"1949-11",
|
1417 |
+
"1949-12",
|
1418 |
+
"1950-01",
|
1419 |
+
"1950-02",
|
1420 |
+
"1950-03",
|
1421 |
+
"1950-04",
|
1422 |
+
"1950-05",
|
1423 |
+
"1950-06",
|
1424 |
+
"1950-07",
|
1425 |
+
"1950-08",
|
1426 |
+
"1950-09",
|
1427 |
+
"1950-10",
|
1428 |
+
"1950-11",
|
1429 |
+
"1950-12",
|
1430 |
+
"1951-01",
|
1431 |
+
"1951-02",
|
1432 |
+
"1951-03",
|
1433 |
+
"1951-04",
|
1434 |
+
"1951-05",
|
1435 |
+
"1951-06",
|
1436 |
+
"1951-07",
|
1437 |
+
"1951-08",
|
1438 |
+
"1951-09",
|
1439 |
+
"1951-10",
|
1440 |
+
"1951-11",
|
1441 |
+
"1951-12",
|
1442 |
+
"1952-01",
|
1443 |
+
"1952-02",
|
1444 |
+
"1952-03",
|
1445 |
+
"1952-04",
|
1446 |
+
"1952-05",
|
1447 |
+
"1952-06",
|
1448 |
+
"1952-07",
|
1449 |
+
"1952-08",
|
1450 |
+
"1952-09",
|
1451 |
+
"1952-10",
|
1452 |
+
"1952-11",
|
1453 |
+
"1952-12",
|
1454 |
+
"1953-01",
|
1455 |
+
"1953-02",
|
1456 |
+
"1953-03",
|
1457 |
+
"1953-04",
|
1458 |
+
"1953-05",
|
1459 |
+
"1953-06",
|
1460 |
+
"1953-07",
|
1461 |
+
"1953-08",
|
1462 |
+
"1953-09",
|
1463 |
+
"1953-10",
|
1464 |
+
"1953-11",
|
1465 |
+
"1953-12",
|
1466 |
+
"1954-01",
|
1467 |
+
"1954-02",
|
1468 |
+
"1954-03",
|
1469 |
+
"1954-04",
|
1470 |
+
"1954-05",
|
1471 |
+
"1954-06",
|
1472 |
+
"1954-07",
|
1473 |
+
"1954-08",
|
1474 |
+
"1954-09",
|
1475 |
+
"1954-10",
|
1476 |
+
"1954-11",
|
1477 |
+
"1954-12",
|
1478 |
+
"1955-01",
|
1479 |
+
"1955-02",
|
1480 |
+
"1955-03",
|
1481 |
+
"1955-04",
|
1482 |
+
"1955-05",
|
1483 |
+
"1955-06",
|
1484 |
+
"1955-07",
|
1485 |
+
"1955-08",
|
1486 |
+
"1955-09",
|
1487 |
+
"1955-10",
|
1488 |
+
"1955-11",
|
1489 |
+
"1955-12",
|
1490 |
+
"1956-01",
|
1491 |
+
"1956-02",
|
1492 |
+
"1956-03",
|
1493 |
+
"1956-04",
|
1494 |
+
"1956-05",
|
1495 |
+
"1956-06",
|
1496 |
+
"1956-07",
|
1497 |
+
"1956-08",
|
1498 |
+
"1956-09",
|
1499 |
+
"1956-10",
|
1500 |
+
"1956-11",
|
1501 |
+
"1956-12",
|
1502 |
+
"1957-01",
|
1503 |
+
"1957-02",
|
1504 |
+
"1957-03",
|
1505 |
+
"1957-04",
|
1506 |
+
"1957-05",
|
1507 |
+
"1957-06",
|
1508 |
+
"1957-07",
|
1509 |
+
"1957-08",
|
1510 |
+
"1957-09",
|
1511 |
+
"1957-10",
|
1512 |
+
"1957-11",
|
1513 |
+
"1957-12",
|
1514 |
+
"1958-01",
|
1515 |
+
"1958-02",
|
1516 |
+
"1958-03",
|
1517 |
+
"1958-04",
|
1518 |
+
"1958-05",
|
1519 |
+
"1958-06",
|
1520 |
+
"1958-07",
|
1521 |
+
"1958-08",
|
1522 |
+
"1958-09",
|
1523 |
+
"1958-10",
|
1524 |
+
"1958-11",
|
1525 |
+
"1958-12",
|
1526 |
+
"1959-01",
|
1527 |
+
"1959-02",
|
1528 |
+
"1959-03",
|
1529 |
+
"1959-04",
|
1530 |
+
"1959-05",
|
1531 |
+
"1959-06",
|
1532 |
+
"1959-07",
|
1533 |
+
"1959-08",
|
1534 |
+
"1959-09",
|
1535 |
+
"1959-10",
|
1536 |
+
"1959-11",
|
1537 |
+
"1959-12",
|
1538 |
+
"1960-01",
|
1539 |
+
"1960-02",
|
1540 |
+
"1960-03",
|
1541 |
+
"1960-04",
|
1542 |
+
"1960-05",
|
1543 |
+
"1960-06",
|
1544 |
+
"1960-07",
|
1545 |
+
"1960-08",
|
1546 |
+
"1960-09",
|
1547 |
+
"1960-10",
|
1548 |
+
"1960-11",
|
1549 |
+
"1960-12"
|
1550 |
+
],
|
1551 |
+
"xaxis": "x",
|
1552 |
+
"y": [
|
1553 |
+
112,
|
1554 |
+
118,
|
1555 |
+
132,
|
1556 |
+
129,
|
1557 |
+
121,
|
1558 |
+
135,
|
1559 |
+
148,
|
1560 |
+
148,
|
1561 |
+
136,
|
1562 |
+
119,
|
1563 |
+
104,
|
1564 |
+
118,
|
1565 |
+
115,
|
1566 |
+
126,
|
1567 |
+
141,
|
1568 |
+
135,
|
1569 |
+
125,
|
1570 |
+
149,
|
1571 |
+
170,
|
1572 |
+
170,
|
1573 |
+
158,
|
1574 |
+
133,
|
1575 |
+
114,
|
1576 |
+
140,
|
1577 |
+
145,
|
1578 |
+
150,
|
1579 |
+
178,
|
1580 |
+
163,
|
1581 |
+
172,
|
1582 |
+
178,
|
1583 |
+
199,
|
1584 |
+
199,
|
1585 |
+
184,
|
1586 |
+
162,
|
1587 |
+
146,
|
1588 |
+
166,
|
1589 |
+
171,
|
1590 |
+
180,
|
1591 |
+
193,
|
1592 |
+
181,
|
1593 |
+
183,
|
1594 |
+
218,
|
1595 |
+
230,
|
1596 |
+
242,
|
1597 |
+
209,
|
1598 |
+
191,
|
1599 |
+
172,
|
1600 |
+
194,
|
1601 |
+
196,
|
1602 |
+
196,
|
1603 |
+
236,
|
1604 |
+
235,
|
1605 |
+
229,
|
1606 |
+
243,
|
1607 |
+
264,
|
1608 |
+
272,
|
1609 |
+
237,
|
1610 |
+
211,
|
1611 |
+
180,
|
1612 |
+
201,
|
1613 |
+
204,
|
1614 |
+
188,
|
1615 |
+
235,
|
1616 |
+
227,
|
1617 |
+
234,
|
1618 |
+
264,
|
1619 |
+
302,
|
1620 |
+
293,
|
1621 |
+
259,
|
1622 |
+
229,
|
1623 |
+
203,
|
1624 |
+
229,
|
1625 |
+
242,
|
1626 |
+
233,
|
1627 |
+
267,
|
1628 |
+
269,
|
1629 |
+
270,
|
1630 |
+
315,
|
1631 |
+
364,
|
1632 |
+
347,
|
1633 |
+
312,
|
1634 |
+
274,
|
1635 |
+
237,
|
1636 |
+
278,
|
1637 |
+
284,
|
1638 |
+
277,
|
1639 |
+
317,
|
1640 |
+
313,
|
1641 |
+
318,
|
1642 |
+
374,
|
1643 |
+
413,
|
1644 |
+
405,
|
1645 |
+
355,
|
1646 |
+
306,
|
1647 |
+
271,
|
1648 |
+
306,
|
1649 |
+
315,
|
1650 |
+
301,
|
1651 |
+
356,
|
1652 |
+
348,
|
1653 |
+
355,
|
1654 |
+
422,
|
1655 |
+
465,
|
1656 |
+
467,
|
1657 |
+
404,
|
1658 |
+
347,
|
1659 |
+
305,
|
1660 |
+
336,
|
1661 |
+
340,
|
1662 |
+
318,
|
1663 |
+
362,
|
1664 |
+
348,
|
1665 |
+
363,
|
1666 |
+
435,
|
1667 |
+
491,
|
1668 |
+
505,
|
1669 |
+
404,
|
1670 |
+
359,
|
1671 |
+
310,
|
1672 |
+
337,
|
1673 |
+
360,
|
1674 |
+
342,
|
1675 |
+
406,
|
1676 |
+
396,
|
1677 |
+
420,
|
1678 |
+
472,
|
1679 |
+
548,
|
1680 |
+
559,
|
1681 |
+
463,
|
1682 |
+
407,
|
1683 |
+
362,
|
1684 |
+
405,
|
1685 |
+
417,
|
1686 |
+
391,
|
1687 |
+
419,
|
1688 |
+
461,
|
1689 |
+
472,
|
1690 |
+
535,
|
1691 |
+
622,
|
1692 |
+
606,
|
1693 |
+
508,
|
1694 |
+
461,
|
1695 |
+
390,
|
1696 |
+
432
|
1697 |
+
],
|
1698 |
+
"yaxis": "y"
|
1699 |
+
}
|
1700 |
+
],
|
1701 |
+
"layout": {
|
1702 |
+
"font": {
|
1703 |
+
"size": 18
|
1704 |
+
},
|
1705 |
+
"height": 400,
|
1706 |
+
"legend": {
|
1707 |
+
"tracegroupgap": 0
|
1708 |
+
},
|
1709 |
+
"margin": {
|
1710 |
+
"t": 60
|
1711 |
+
},
|
1712 |
+
"template": {
|
1713 |
+
"data": {
|
1714 |
+
"bar": [
|
1715 |
+
{
|
1716 |
+
"error_x": {
|
1717 |
+
"color": "rgb(36,36,36)"
|
1718 |
+
},
|
1719 |
+
"error_y": {
|
1720 |
+
"color": "rgb(36,36,36)"
|
1721 |
+
},
|
1722 |
+
"marker": {
|
1723 |
+
"line": {
|
1724 |
+
"color": "white",
|
1725 |
+
"width": 0.5
|
1726 |
+
},
|
1727 |
+
"pattern": {
|
1728 |
+
"fillmode": "overlay",
|
1729 |
+
"size": 10,
|
1730 |
+
"solidity": 0.2
|
1731 |
+
}
|
1732 |
+
},
|
1733 |
+
"type": "bar"
|
1734 |
+
}
|
1735 |
+
],
|
1736 |
+
"barpolar": [
|
1737 |
+
{
|
1738 |
+
"marker": {
|
1739 |
+
"line": {
|
1740 |
+
"color": "white",
|
1741 |
+
"width": 0.5
|
1742 |
+
},
|
1743 |
+
"pattern": {
|
1744 |
+
"fillmode": "overlay",
|
1745 |
+
"size": 10,
|
1746 |
+
"solidity": 0.2
|
1747 |
+
}
|
1748 |
+
},
|
1749 |
+
"type": "barpolar"
|
1750 |
+
}
|
1751 |
+
],
|
1752 |
+
"carpet": [
|
1753 |
+
{
|
1754 |
+
"aaxis": {
|
1755 |
+
"endlinecolor": "rgb(36,36,36)",
|
1756 |
+
"gridcolor": "white",
|
1757 |
+
"linecolor": "white",
|
1758 |
+
"minorgridcolor": "white",
|
1759 |
+
"startlinecolor": "rgb(36,36,36)"
|
1760 |
+
},
|
1761 |
+
"baxis": {
|
1762 |
+
"endlinecolor": "rgb(36,36,36)",
|
1763 |
+
"gridcolor": "white",
|
1764 |
+
"linecolor": "white",
|
1765 |
+
"minorgridcolor": "white",
|
1766 |
+
"startlinecolor": "rgb(36,36,36)"
|
1767 |
+
},
|
1768 |
+
"type": "carpet"
|
1769 |
+
}
|
1770 |
+
],
|
1771 |
+
"choropleth": [
|
1772 |
+
{
|
1773 |
+
"colorbar": {
|
1774 |
+
"outlinewidth": 1,
|
1775 |
+
"tickcolor": "rgb(36,36,36)",
|
1776 |
+
"ticks": "outside"
|
1777 |
+
},
|
1778 |
+
"type": "choropleth"
|
1779 |
+
}
|
1780 |
+
],
|
1781 |
+
"contour": [
|
1782 |
+
{
|
1783 |
+
"colorbar": {
|
1784 |
+
"outlinewidth": 1,
|
1785 |
+
"tickcolor": "rgb(36,36,36)",
|
1786 |
+
"ticks": "outside"
|
1787 |
+
},
|
1788 |
+
"colorscale": [
|
1789 |
+
[
|
1790 |
+
0,
|
1791 |
+
"#440154"
|
1792 |
+
],
|
1793 |
+
[
|
1794 |
+
0.1111111111111111,
|
1795 |
+
"#482878"
|
1796 |
+
],
|
1797 |
+
[
|
1798 |
+
0.2222222222222222,
|
1799 |
+
"#3e4989"
|
1800 |
+
],
|
1801 |
+
[
|
1802 |
+
0.3333333333333333,
|
1803 |
+
"#31688e"
|
1804 |
+
],
|
1805 |
+
[
|
1806 |
+
0.4444444444444444,
|
1807 |
+
"#26828e"
|
1808 |
+
],
|
1809 |
+
[
|
1810 |
+
0.5555555555555556,
|
1811 |
+
"#1f9e89"
|
1812 |
+
],
|
1813 |
+
[
|
1814 |
+
0.6666666666666666,
|
1815 |
+
"#35b779"
|
1816 |
+
],
|
1817 |
+
[
|
1818 |
+
0.7777777777777778,
|
1819 |
+
"#6ece58"
|
1820 |
+
],
|
1821 |
+
[
|
1822 |
+
0.8888888888888888,
|
1823 |
+
"#b5de2b"
|
1824 |
+
],
|
1825 |
+
[
|
1826 |
+
1,
|
1827 |
+
"#fde725"
|
1828 |
+
]
|
1829 |
+
],
|
1830 |
+
"type": "contour"
|
1831 |
+
}
|
1832 |
+
],
|
1833 |
+
"contourcarpet": [
|
1834 |
+
{
|
1835 |
+
"colorbar": {
|
1836 |
+
"outlinewidth": 1,
|
1837 |
+
"tickcolor": "rgb(36,36,36)",
|
1838 |
+
"ticks": "outside"
|
1839 |
+
},
|
1840 |
+
"type": "contourcarpet"
|
1841 |
+
}
|
1842 |
+
],
|
1843 |
+
"heatmap": [
|
1844 |
+
{
|
1845 |
+
"colorbar": {
|
1846 |
+
"outlinewidth": 1,
|
1847 |
+
"tickcolor": "rgb(36,36,36)",
|
1848 |
+
"ticks": "outside"
|
1849 |
+
},
|
1850 |
+
"colorscale": [
|
1851 |
+
[
|
1852 |
+
0,
|
1853 |
+
"#440154"
|
1854 |
+
],
|
1855 |
+
[
|
1856 |
+
0.1111111111111111,
|
1857 |
+
"#482878"
|
1858 |
+
],
|
1859 |
+
[
|
1860 |
+
0.2222222222222222,
|
1861 |
+
"#3e4989"
|
1862 |
+
],
|
1863 |
+
[
|
1864 |
+
0.3333333333333333,
|
1865 |
+
"#31688e"
|
1866 |
+
],
|
1867 |
+
[
|
1868 |
+
0.4444444444444444,
|
1869 |
+
"#26828e"
|
1870 |
+
],
|
1871 |
+
[
|
1872 |
+
0.5555555555555556,
|
1873 |
+
"#1f9e89"
|
1874 |
+
],
|
1875 |
+
[
|
1876 |
+
0.6666666666666666,
|
1877 |
+
"#35b779"
|
1878 |
+
],
|
1879 |
+
[
|
1880 |
+
0.7777777777777778,
|
1881 |
+
"#6ece58"
|
1882 |
+
],
|
1883 |
+
[
|
1884 |
+
0.8888888888888888,
|
1885 |
+
"#b5de2b"
|
1886 |
+
],
|
1887 |
+
[
|
1888 |
+
1,
|
1889 |
+
"#fde725"
|
1890 |
+
]
|
1891 |
+
],
|
1892 |
+
"type": "heatmap"
|
1893 |
+
}
|
1894 |
+
],
|
1895 |
+
"heatmapgl": [
|
1896 |
+
{
|
1897 |
+
"colorbar": {
|
1898 |
+
"outlinewidth": 1,
|
1899 |
+
"tickcolor": "rgb(36,36,36)",
|
1900 |
+
"ticks": "outside"
|
1901 |
+
},
|
1902 |
+
"colorscale": [
|
1903 |
+
[
|
1904 |
+
0,
|
1905 |
+
"#440154"
|
1906 |
+
],
|
1907 |
+
[
|
1908 |
+
0.1111111111111111,
|
1909 |
+
"#482878"
|
1910 |
+
],
|
1911 |
+
[
|
1912 |
+
0.2222222222222222,
|
1913 |
+
"#3e4989"
|
1914 |
+
],
|
1915 |
+
[
|
1916 |
+
0.3333333333333333,
|
1917 |
+
"#31688e"
|
1918 |
+
],
|
1919 |
+
[
|
1920 |
+
0.4444444444444444,
|
1921 |
+
"#26828e"
|
1922 |
+
],
|
1923 |
+
[
|
1924 |
+
0.5555555555555556,
|
1925 |
+
"#1f9e89"
|
1926 |
+
],
|
1927 |
+
[
|
1928 |
+
0.6666666666666666,
|
1929 |
+
"#35b779"
|
1930 |
+
],
|
1931 |
+
[
|
1932 |
+
0.7777777777777778,
|
1933 |
+
"#6ece58"
|
1934 |
+
],
|
1935 |
+
[
|
1936 |
+
0.8888888888888888,
|
1937 |
+
"#b5de2b"
|
1938 |
+
],
|
1939 |
+
[
|
1940 |
+
1,
|
1941 |
+
"#fde725"
|
1942 |
+
]
|
1943 |
+
],
|
1944 |
+
"type": "heatmapgl"
|
1945 |
+
}
|
1946 |
+
],
|
1947 |
+
"histogram": [
|
1948 |
+
{
|
1949 |
+
"marker": {
|
1950 |
+
"line": {
|
1951 |
+
"color": "white",
|
1952 |
+
"width": 0.6
|
1953 |
+
}
|
1954 |
+
},
|
1955 |
+
"type": "histogram"
|
1956 |
+
}
|
1957 |
+
],
|
1958 |
+
"histogram2d": [
|
1959 |
+
{
|
1960 |
+
"colorbar": {
|
1961 |
+
"outlinewidth": 1,
|
1962 |
+
"tickcolor": "rgb(36,36,36)",
|
1963 |
+
"ticks": "outside"
|
1964 |
+
},
|
1965 |
+
"colorscale": [
|
1966 |
+
[
|
1967 |
+
0,
|
1968 |
+
"#440154"
|
1969 |
+
],
|
1970 |
+
[
|
1971 |
+
0.1111111111111111,
|
1972 |
+
"#482878"
|
1973 |
+
],
|
1974 |
+
[
|
1975 |
+
0.2222222222222222,
|
1976 |
+
"#3e4989"
|
1977 |
+
],
|
1978 |
+
[
|
1979 |
+
0.3333333333333333,
|
1980 |
+
"#31688e"
|
1981 |
+
],
|
1982 |
+
[
|
1983 |
+
0.4444444444444444,
|
1984 |
+
"#26828e"
|
1985 |
+
],
|
1986 |
+
[
|
1987 |
+
0.5555555555555556,
|
1988 |
+
"#1f9e89"
|
1989 |
+
],
|
1990 |
+
[
|
1991 |
+
0.6666666666666666,
|
1992 |
+
"#35b779"
|
1993 |
+
],
|
1994 |
+
[
|
1995 |
+
0.7777777777777778,
|
1996 |
+
"#6ece58"
|
1997 |
+
],
|
1998 |
+
[
|
1999 |
+
0.8888888888888888,
|
2000 |
+
"#b5de2b"
|
2001 |
+
],
|
2002 |
+
[
|
2003 |
+
1,
|
2004 |
+
"#fde725"
|
2005 |
+
]
|
2006 |
+
],
|
2007 |
+
"type": "histogram2d"
|
2008 |
+
}
|
2009 |
+
],
|
2010 |
+
"histogram2dcontour": [
|
2011 |
+
{
|
2012 |
+
"colorbar": {
|
2013 |
+
"outlinewidth": 1,
|
2014 |
+
"tickcolor": "rgb(36,36,36)",
|
2015 |
+
"ticks": "outside"
|
2016 |
+
},
|
2017 |
+
"colorscale": [
|
2018 |
+
[
|
2019 |
+
0,
|
2020 |
+
"#440154"
|
2021 |
+
],
|
2022 |
+
[
|
2023 |
+
0.1111111111111111,
|
2024 |
+
"#482878"
|
2025 |
+
],
|
2026 |
+
[
|
2027 |
+
0.2222222222222222,
|
2028 |
+
"#3e4989"
|
2029 |
+
],
|
2030 |
+
[
|
2031 |
+
0.3333333333333333,
|
2032 |
+
"#31688e"
|
2033 |
+
],
|
2034 |
+
[
|
2035 |
+
0.4444444444444444,
|
2036 |
+
"#26828e"
|
2037 |
+
],
|
2038 |
+
[
|
2039 |
+
0.5555555555555556,
|
2040 |
+
"#1f9e89"
|
2041 |
+
],
|
2042 |
+
[
|
2043 |
+
0.6666666666666666,
|
2044 |
+
"#35b779"
|
2045 |
+
],
|
2046 |
+
[
|
2047 |
+
0.7777777777777778,
|
2048 |
+
"#6ece58"
|
2049 |
+
],
|
2050 |
+
[
|
2051 |
+
0.8888888888888888,
|
2052 |
+
"#b5de2b"
|
2053 |
+
],
|
2054 |
+
[
|
2055 |
+
1,
|
2056 |
+
"#fde725"
|
2057 |
+
]
|
2058 |
+
],
|
2059 |
+
"type": "histogram2dcontour"
|
2060 |
+
}
|
2061 |
+
],
|
2062 |
+
"mesh3d": [
|
2063 |
+
{
|
2064 |
+
"colorbar": {
|
2065 |
+
"outlinewidth": 1,
|
2066 |
+
"tickcolor": "rgb(36,36,36)",
|
2067 |
+
"ticks": "outside"
|
2068 |
+
},
|
2069 |
+
"type": "mesh3d"
|
2070 |
+
}
|
2071 |
+
],
|
2072 |
+
"parcoords": [
|
2073 |
+
{
|
2074 |
+
"line": {
|
2075 |
+
"colorbar": {
|
2076 |
+
"outlinewidth": 1,
|
2077 |
+
"tickcolor": "rgb(36,36,36)",
|
2078 |
+
"ticks": "outside"
|
2079 |
+
}
|
2080 |
+
},
|
2081 |
+
"type": "parcoords"
|
2082 |
+
}
|
2083 |
+
],
|
2084 |
+
"pie": [
|
2085 |
+
{
|
2086 |
+
"automargin": true,
|
2087 |
+
"type": "pie"
|
2088 |
+
}
|
2089 |
+
],
|
2090 |
+
"scatter": [
|
2091 |
+
{
|
2092 |
+
"fillpattern": {
|
2093 |
+
"fillmode": "overlay",
|
2094 |
+
"size": 10,
|
2095 |
+
"solidity": 0.2
|
2096 |
+
},
|
2097 |
+
"type": "scatter"
|
2098 |
+
}
|
2099 |
+
],
|
2100 |
+
"scatter3d": [
|
2101 |
+
{
|
2102 |
+
"line": {
|
2103 |
+
"colorbar": {
|
2104 |
+
"outlinewidth": 1,
|
2105 |
+
"tickcolor": "rgb(36,36,36)",
|
2106 |
+
"ticks": "outside"
|
2107 |
+
}
|
2108 |
+
},
|
2109 |
+
"marker": {
|
2110 |
+
"colorbar": {
|
2111 |
+
"outlinewidth": 1,
|
2112 |
+
"tickcolor": "rgb(36,36,36)",
|
2113 |
+
"ticks": "outside"
|
2114 |
+
}
|
2115 |
+
},
|
2116 |
+
"type": "scatter3d"
|
2117 |
+
}
|
2118 |
+
],
|
2119 |
+
"scattercarpet": [
|
2120 |
+
{
|
2121 |
+
"marker": {
|
2122 |
+
"colorbar": {
|
2123 |
+
"outlinewidth": 1,
|
2124 |
+
"tickcolor": "rgb(36,36,36)",
|
2125 |
+
"ticks": "outside"
|
2126 |
+
}
|
2127 |
+
},
|
2128 |
+
"type": "scattercarpet"
|
2129 |
+
}
|
2130 |
+
],
|
2131 |
+
"scattergeo": [
|
2132 |
+
{
|
2133 |
+
"marker": {
|
2134 |
+
"colorbar": {
|
2135 |
+
"outlinewidth": 1,
|
2136 |
+
"tickcolor": "rgb(36,36,36)",
|
2137 |
+
"ticks": "outside"
|
2138 |
+
}
|
2139 |
+
},
|
2140 |
+
"type": "scattergeo"
|
2141 |
+
}
|
2142 |
+
],
|
2143 |
+
"scattergl": [
|
2144 |
+
{
|
2145 |
+
"marker": {
|
2146 |
+
"colorbar": {
|
2147 |
+
"outlinewidth": 1,
|
2148 |
+
"tickcolor": "rgb(36,36,36)",
|
2149 |
+
"ticks": "outside"
|
2150 |
+
}
|
2151 |
+
},
|
2152 |
+
"type": "scattergl"
|
2153 |
+
}
|
2154 |
+
],
|
2155 |
+
"scattermapbox": [
|
2156 |
+
{
|
2157 |
+
"marker": {
|
2158 |
+
"colorbar": {
|
2159 |
+
"outlinewidth": 1,
|
2160 |
+
"tickcolor": "rgb(36,36,36)",
|
2161 |
+
"ticks": "outside"
|
2162 |
+
}
|
2163 |
+
},
|
2164 |
+
"type": "scattermapbox"
|
2165 |
+
}
|
2166 |
+
],
|
2167 |
+
"scatterpolar": [
|
2168 |
+
{
|
2169 |
+
"marker": {
|
2170 |
+
"colorbar": {
|
2171 |
+
"outlinewidth": 1,
|
2172 |
+
"tickcolor": "rgb(36,36,36)",
|
2173 |
+
"ticks": "outside"
|
2174 |
+
}
|
2175 |
+
},
|
2176 |
+
"type": "scatterpolar"
|
2177 |
+
}
|
2178 |
+
],
|
2179 |
+
"scatterpolargl": [
|
2180 |
+
{
|
2181 |
+
"marker": {
|
2182 |
+
"colorbar": {
|
2183 |
+
"outlinewidth": 1,
|
2184 |
+
"tickcolor": "rgb(36,36,36)",
|
2185 |
+
"ticks": "outside"
|
2186 |
+
}
|
2187 |
+
},
|
2188 |
+
"type": "scatterpolargl"
|
2189 |
+
}
|
2190 |
+
],
|
2191 |
+
"scatterternary": [
|
2192 |
+
{
|
2193 |
+
"marker": {
|
2194 |
+
"colorbar": {
|
2195 |
+
"outlinewidth": 1,
|
2196 |
+
"tickcolor": "rgb(36,36,36)",
|
2197 |
+
"ticks": "outside"
|
2198 |
+
}
|
2199 |
+
},
|
2200 |
+
"type": "scatterternary"
|
2201 |
+
}
|
2202 |
+
],
|
2203 |
+
"surface": [
|
2204 |
+
{
|
2205 |
+
"colorbar": {
|
2206 |
+
"outlinewidth": 1,
|
2207 |
+
"tickcolor": "rgb(36,36,36)",
|
2208 |
+
"ticks": "outside"
|
2209 |
+
},
|
2210 |
+
"colorscale": [
|
2211 |
+
[
|
2212 |
+
0,
|
2213 |
+
"#440154"
|
2214 |
+
],
|
2215 |
+
[
|
2216 |
+
0.1111111111111111,
|
2217 |
+
"#482878"
|
2218 |
+
],
|
2219 |
+
[
|
2220 |
+
0.2222222222222222,
|
2221 |
+
"#3e4989"
|
2222 |
+
],
|
2223 |
+
[
|
2224 |
+
0.3333333333333333,
|
2225 |
+
"#31688e"
|
2226 |
+
],
|
2227 |
+
[
|
2228 |
+
0.4444444444444444,
|
2229 |
+
"#26828e"
|
2230 |
+
],
|
2231 |
+
[
|
2232 |
+
0.5555555555555556,
|
2233 |
+
"#1f9e89"
|
2234 |
+
],
|
2235 |
+
[
|
2236 |
+
0.6666666666666666,
|
2237 |
+
"#35b779"
|
2238 |
+
],
|
2239 |
+
[
|
2240 |
+
0.7777777777777778,
|
2241 |
+
"#6ece58"
|
2242 |
+
],
|
2243 |
+
[
|
2244 |
+
0.8888888888888888,
|
2245 |
+
"#b5de2b"
|
2246 |
+
],
|
2247 |
+
[
|
2248 |
+
1,
|
2249 |
+
"#fde725"
|
2250 |
+
]
|
2251 |
+
],
|
2252 |
+
"type": "surface"
|
2253 |
+
}
|
2254 |
+
],
|
2255 |
+
"table": [
|
2256 |
+
{
|
2257 |
+
"cells": {
|
2258 |
+
"fill": {
|
2259 |
+
"color": "rgb(237,237,237)"
|
2260 |
+
},
|
2261 |
+
"line": {
|
2262 |
+
"color": "white"
|
2263 |
+
}
|
2264 |
+
},
|
2265 |
+
"header": {
|
2266 |
+
"fill": {
|
2267 |
+
"color": "rgb(217,217,217)"
|
2268 |
+
},
|
2269 |
+
"line": {
|
2270 |
+
"color": "white"
|
2271 |
+
}
|
2272 |
+
},
|
2273 |
+
"type": "table"
|
2274 |
+
}
|
2275 |
+
]
|
2276 |
+
},
|
2277 |
+
"layout": {
|
2278 |
+
"annotationdefaults": {
|
2279 |
+
"arrowhead": 0,
|
2280 |
+
"arrowwidth": 1
|
2281 |
+
},
|
2282 |
+
"autotypenumbers": "strict",
|
2283 |
+
"coloraxis": {
|
2284 |
+
"colorbar": {
|
2285 |
+
"outlinewidth": 1,
|
2286 |
+
"tickcolor": "rgb(36,36,36)",
|
2287 |
+
"ticks": "outside"
|
2288 |
+
}
|
2289 |
+
},
|
2290 |
+
"colorscale": {
|
2291 |
+
"diverging": [
|
2292 |
+
[
|
2293 |
+
0,
|
2294 |
+
"rgb(103,0,31)"
|
2295 |
+
],
|
2296 |
+
[
|
2297 |
+
0.1,
|
2298 |
+
"rgb(178,24,43)"
|
2299 |
+
],
|
2300 |
+
[
|
2301 |
+
0.2,
|
2302 |
+
"rgb(214,96,77)"
|
2303 |
+
],
|
2304 |
+
[
|
2305 |
+
0.3,
|
2306 |
+
"rgb(244,165,130)"
|
2307 |
+
],
|
2308 |
+
[
|
2309 |
+
0.4,
|
2310 |
+
"rgb(253,219,199)"
|
2311 |
+
],
|
2312 |
+
[
|
2313 |
+
0.5,
|
2314 |
+
"rgb(247,247,247)"
|
2315 |
+
],
|
2316 |
+
[
|
2317 |
+
0.6,
|
2318 |
+
"rgb(209,229,240)"
|
2319 |
+
],
|
2320 |
+
[
|
2321 |
+
0.7,
|
2322 |
+
"rgb(146,197,222)"
|
2323 |
+
],
|
2324 |
+
[
|
2325 |
+
0.8,
|
2326 |
+
"rgb(67,147,195)"
|
2327 |
+
],
|
2328 |
+
[
|
2329 |
+
0.9,
|
2330 |
+
"rgb(33,102,172)"
|
2331 |
+
],
|
2332 |
+
[
|
2333 |
+
1,
|
2334 |
+
"rgb(5,48,97)"
|
2335 |
+
]
|
2336 |
+
],
|
2337 |
+
"sequential": [
|
2338 |
+
[
|
2339 |
+
0,
|
2340 |
+
"#440154"
|
2341 |
+
],
|
2342 |
+
[
|
2343 |
+
0.1111111111111111,
|
2344 |
+
"#482878"
|
2345 |
+
],
|
2346 |
+
[
|
2347 |
+
0.2222222222222222,
|
2348 |
+
"#3e4989"
|
2349 |
+
],
|
2350 |
+
[
|
2351 |
+
0.3333333333333333,
|
2352 |
+
"#31688e"
|
2353 |
+
],
|
2354 |
+
[
|
2355 |
+
0.4444444444444444,
|
2356 |
+
"#26828e"
|
2357 |
+
],
|
2358 |
+
[
|
2359 |
+
0.5555555555555556,
|
2360 |
+
"#1f9e89"
|
2361 |
+
],
|
2362 |
+
[
|
2363 |
+
0.6666666666666666,
|
2364 |
+
"#35b779"
|
2365 |
+
],
|
2366 |
+
[
|
2367 |
+
0.7777777777777778,
|
2368 |
+
"#6ece58"
|
2369 |
+
],
|
2370 |
+
[
|
2371 |
+
0.8888888888888888,
|
2372 |
+
"#b5de2b"
|
2373 |
+
],
|
2374 |
+
[
|
2375 |
+
1,
|
2376 |
+
"#fde725"
|
2377 |
+
]
|
2378 |
+
],
|
2379 |
+
"sequentialminus": [
|
2380 |
+
[
|
2381 |
+
0,
|
2382 |
+
"#440154"
|
2383 |
+
],
|
2384 |
+
[
|
2385 |
+
0.1111111111111111,
|
2386 |
+
"#482878"
|
2387 |
+
],
|
2388 |
+
[
|
2389 |
+
0.2222222222222222,
|
2390 |
+
"#3e4989"
|
2391 |
+
],
|
2392 |
+
[
|
2393 |
+
0.3333333333333333,
|
2394 |
+
"#31688e"
|
2395 |
+
],
|
2396 |
+
[
|
2397 |
+
0.4444444444444444,
|
2398 |
+
"#26828e"
|
2399 |
+
],
|
2400 |
+
[
|
2401 |
+
0.5555555555555556,
|
2402 |
+
"#1f9e89"
|
2403 |
+
],
|
2404 |
+
[
|
2405 |
+
0.6666666666666666,
|
2406 |
+
"#35b779"
|
2407 |
+
],
|
2408 |
+
[
|
2409 |
+
0.7777777777777778,
|
2410 |
+
"#6ece58"
|
2411 |
+
],
|
2412 |
+
[
|
2413 |
+
0.8888888888888888,
|
2414 |
+
"#b5de2b"
|
2415 |
+
],
|
2416 |
+
[
|
2417 |
+
1,
|
2418 |
+
"#fde725"
|
2419 |
+
]
|
2420 |
+
]
|
2421 |
+
},
|
2422 |
+
"colorway": [
|
2423 |
+
"#1F77B4",
|
2424 |
+
"#FF7F0E",
|
2425 |
+
"#2CA02C",
|
2426 |
+
"#D62728",
|
2427 |
+
"#9467BD",
|
2428 |
+
"#8C564B",
|
2429 |
+
"#E377C2",
|
2430 |
+
"#7F7F7F",
|
2431 |
+
"#BCBD22",
|
2432 |
+
"#17BECF"
|
2433 |
+
],
|
2434 |
+
"font": {
|
2435 |
+
"color": "rgb(36,36,36)"
|
2436 |
+
},
|
2437 |
+
"geo": {
|
2438 |
+
"bgcolor": "white",
|
2439 |
+
"lakecolor": "white",
|
2440 |
+
"landcolor": "white",
|
2441 |
+
"showlakes": true,
|
2442 |
+
"showland": true,
|
2443 |
+
"subunitcolor": "white"
|
2444 |
+
},
|
2445 |
+
"hoverlabel": {
|
2446 |
+
"align": "left"
|
2447 |
+
},
|
2448 |
+
"hovermode": "closest",
|
2449 |
+
"mapbox": {
|
2450 |
+
"style": "light"
|
2451 |
+
},
|
2452 |
+
"paper_bgcolor": "white",
|
2453 |
+
"plot_bgcolor": "white",
|
2454 |
+
"polar": {
|
2455 |
+
"angularaxis": {
|
2456 |
+
"gridcolor": "rgb(232,232,232)",
|
2457 |
+
"linecolor": "rgb(36,36,36)",
|
2458 |
+
"showgrid": false,
|
2459 |
+
"showline": true,
|
2460 |
+
"ticks": "outside"
|
2461 |
+
},
|
2462 |
+
"bgcolor": "white",
|
2463 |
+
"radialaxis": {
|
2464 |
+
"gridcolor": "rgb(232,232,232)",
|
2465 |
+
"linecolor": "rgb(36,36,36)",
|
2466 |
+
"showgrid": false,
|
2467 |
+
"showline": true,
|
2468 |
+
"ticks": "outside"
|
2469 |
+
}
|
2470 |
+
},
|
2471 |
+
"scene": {
|
2472 |
+
"xaxis": {
|
2473 |
+
"backgroundcolor": "white",
|
2474 |
+
"gridcolor": "rgb(232,232,232)",
|
2475 |
+
"gridwidth": 2,
|
2476 |
+
"linecolor": "rgb(36,36,36)",
|
2477 |
+
"showbackground": true,
|
2478 |
+
"showgrid": false,
|
2479 |
+
"showline": true,
|
2480 |
+
"ticks": "outside",
|
2481 |
+
"zeroline": false,
|
2482 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2483 |
+
},
|
2484 |
+
"yaxis": {
|
2485 |
+
"backgroundcolor": "white",
|
2486 |
+
"gridcolor": "rgb(232,232,232)",
|
2487 |
+
"gridwidth": 2,
|
2488 |
+
"linecolor": "rgb(36,36,36)",
|
2489 |
+
"showbackground": true,
|
2490 |
+
"showgrid": false,
|
2491 |
+
"showline": true,
|
2492 |
+
"ticks": "outside",
|
2493 |
+
"zeroline": false,
|
2494 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2495 |
+
},
|
2496 |
+
"zaxis": {
|
2497 |
+
"backgroundcolor": "white",
|
2498 |
+
"gridcolor": "rgb(232,232,232)",
|
2499 |
+
"gridwidth": 2,
|
2500 |
+
"linecolor": "rgb(36,36,36)",
|
2501 |
+
"showbackground": true,
|
2502 |
+
"showgrid": false,
|
2503 |
+
"showline": true,
|
2504 |
+
"ticks": "outside",
|
2505 |
+
"zeroline": false,
|
2506 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2507 |
+
}
|
2508 |
+
},
|
2509 |
+
"shapedefaults": {
|
2510 |
+
"fillcolor": "black",
|
2511 |
+
"line": {
|
2512 |
+
"width": 0
|
2513 |
+
},
|
2514 |
+
"opacity": 0.3
|
2515 |
+
},
|
2516 |
+
"ternary": {
|
2517 |
+
"aaxis": {
|
2518 |
+
"gridcolor": "rgb(232,232,232)",
|
2519 |
+
"linecolor": "rgb(36,36,36)",
|
2520 |
+
"showgrid": false,
|
2521 |
+
"showline": true,
|
2522 |
+
"ticks": "outside"
|
2523 |
+
},
|
2524 |
+
"baxis": {
|
2525 |
+
"gridcolor": "rgb(232,232,232)",
|
2526 |
+
"linecolor": "rgb(36,36,36)",
|
2527 |
+
"showgrid": false,
|
2528 |
+
"showline": true,
|
2529 |
+
"ticks": "outside"
|
2530 |
+
},
|
2531 |
+
"bgcolor": "white",
|
2532 |
+
"caxis": {
|
2533 |
+
"gridcolor": "rgb(232,232,232)",
|
2534 |
+
"linecolor": "rgb(36,36,36)",
|
2535 |
+
"showgrid": false,
|
2536 |
+
"showline": true,
|
2537 |
+
"ticks": "outside"
|
2538 |
+
}
|
2539 |
+
},
|
2540 |
+
"title": {
|
2541 |
+
"x": 0.05
|
2542 |
+
},
|
2543 |
+
"xaxis": {
|
2544 |
+
"automargin": true,
|
2545 |
+
"gridcolor": "rgb(232,232,232)",
|
2546 |
+
"linecolor": "rgb(36,36,36)",
|
2547 |
+
"showgrid": false,
|
2548 |
+
"showline": true,
|
2549 |
+
"ticks": "outside",
|
2550 |
+
"title": {
|
2551 |
+
"standoff": 15
|
2552 |
+
},
|
2553 |
+
"zeroline": false,
|
2554 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2555 |
+
},
|
2556 |
+
"yaxis": {
|
2557 |
+
"automargin": true,
|
2558 |
+
"gridcolor": "rgb(232,232,232)",
|
2559 |
+
"linecolor": "rgb(36,36,36)",
|
2560 |
+
"showgrid": false,
|
2561 |
+
"showline": true,
|
2562 |
+
"ticks": "outside",
|
2563 |
+
"title": {
|
2564 |
+
"standoff": 15
|
2565 |
+
},
|
2566 |
+
"zeroline": false,
|
2567 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2568 |
+
}
|
2569 |
+
}
|
2570 |
+
},
|
2571 |
+
"title": {
|
2572 |
+
"text": "Airline Passengers",
|
2573 |
+
"x": 0.5
|
2574 |
+
},
|
2575 |
+
"width": 650,
|
2576 |
+
"xaxis": {
|
2577 |
+
"anchor": "y",
|
2578 |
+
"domain": [
|
2579 |
+
0,
|
2580 |
+
1
|
2581 |
+
],
|
2582 |
+
"title": {
|
2583 |
+
"text": "Date"
|
2584 |
+
}
|
2585 |
+
},
|
2586 |
+
"yaxis": {
|
2587 |
+
"anchor": "x",
|
2588 |
+
"domain": [
|
2589 |
+
0,
|
2590 |
+
1
|
2591 |
+
],
|
2592 |
+
"title": {
|
2593 |
+
"text": "Passengers"
|
2594 |
+
}
|
2595 |
+
}
|
2596 |
+
}
|
2597 |
+
}
|
2598 |
+
},
|
2599 |
+
"metadata": {},
|
2600 |
+
"output_type": "display_data"
|
2601 |
+
}
|
2602 |
+
],
|
2603 |
+
"source": [
|
2604 |
+
"fig.update_layout(\n",
|
2605 |
+
" template=\"simple_white\",\n",
|
2606 |
+
" font=dict(size=18),\n",
|
2607 |
+
" title_text=title,\n",
|
2608 |
+
" width=650,\n",
|
2609 |
+
" title_x=0.5,\n",
|
2610 |
+
" height=400,\n",
|
2611 |
+
")\n",
|
2612 |
+
"\n",
|
2613 |
+
"if text:\n",
|
2614 |
+
" fig.add_annotation(\n",
|
2615 |
+
" x=\"1952-12-20\",\n",
|
2616 |
+
" y=10,\n",
|
2617 |
+
" text=f\"Lambda = {lam:.3f}\",\n",
|
2618 |
+
" align=\"left\",\n",
|
2619 |
+
" yanchor=\"bottom\",\n",
|
2620 |
+
" showarrow=False,\n",
|
2621 |
+
" font=dict(size=20, color=\"black\", family=\"Courier New, monospace\"),\n",
|
2622 |
+
" bordercolor=\"black\",\n",
|
2623 |
+
" borderwidth=2,\n",
|
2624 |
+
" bgcolor=\"white\",\n",
|
2625 |
+
" )\n",
|
2626 |
+
"\n",
|
2627 |
+
"fig.show()"
|
2628 |
+
]
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"cell_type": "code",
|
2632 |
+
"execution_count": 10,
|
2633 |
+
"metadata": {},
|
2634 |
+
"outputs": [
|
2635 |
+
{
|
2636 |
+
"data": {
|
2637 |
+
"text/plain": [
|
2638 |
+
"(array([ 6.82748858, 6.93282073, 7.16188991, 7.1146092 , 6.98378534,\n",
|
2639 |
+
" 7.20826381, 7.39959625, 7.39959625, 7.22352672, 6.94993037,\n",
|
2640 |
+
" 6.67929971, 6.93282073, 6.88073999, 7.06638224, 7.29843681,\n",
|
2641 |
+
" 7.20826381, 7.0500891 , 7.41371315, 7.69297573, 7.69297573,\n",
|
2642 |
+
" 7.5372583 , 7.17744676, 6.86312241, 7.28363791, 7.3567524 ,\n",
|
2643 |
+
" 7.42774956, 7.79166114, 7.60332502, 7.71801212, 7.79166114,\n",
|
2644 |
+
" 8.03379761, 8.03379761, 7.86322462, 7.59025116, 7.37111692,\n",
|
2645 |
+
" 7.64214072, 7.70552511, 7.81574099, 7.96692819, 7.82769554,\n",
|
2646 |
+
" 7.85143679, 8.23478318, 8.35415586, 8.46833523, 8.14152245,\n",
|
2647 |
+
" 7.94424459, 7.71801212, 7.97819498, 8.00058091, 8.00058091,\n",
|
2648 |
+
" 8.41186391, 8.40233336, 8.34441344, 8.47763088, 8.66568394,\n",
|
2649 |
+
" 8.73398059, 8.42136011, 8.16253865, 7.81574099, 8.05570584,\n",
|
2650 |
+
" 8.08822246, 7.9098368 , 8.40233336, 8.32481936, 8.3927682 ,\n",
|
2651 |
+
" 8.66568394, 8.9757346 , 8.90544135, 8.62209773, 8.34441344,\n",
|
2652 |
+
" 8.07742912, 8.34441344, 8.46833523, 8.38316815, 8.69149921,\n",
|
2653 |
+
" 8.70857243, 8.71706852, 9.07418213, 9.41661368, 9.30252135,\n",
|
2654 |
+
" 9.05177502, 8.75078704, 8.42136011, 8.78408875, 8.83328384,\n",
|
2655 |
+
" 8.77580178, 9.08901941, 9.05926438, 9.09640816, 9.48162253,\n",
|
2656 |
+
" 9.72178824, 9.67414826, 9.35679145, 9.00640452, 8.72553785,\n",
|
2657 |
+
" 9.00640452, 9.07418213, 8.96801306, 9.36350176, 9.30936305,\n",
|
2658 |
+
" 9.35679145, 9.77445246, 10.01358765, 10.02424443, 9.66813702,\n",
|
2659 |
+
" 9.30252135, 8.99876921, 9.22613239, 9.25415342, 9.09640816,\n",
|
2660 |
+
" 9.40342965, 9.30936305, 9.41002941, 9.84885828, 10.1491833 ,\n",
|
2661 |
+
" 10.21968053, 9.66813702, 9.38353677, 9.03673475, 9.23316418,\n",
|
2662 |
+
" 9.39018342, 9.26805875, 9.68014687, 9.61958525, 9.76283258,\n",
|
2663 |
+
" 10.05071724, 10.4262609 , 10.47688178, 10.00289175, 9.68613291,\n",
|
2664 |
+
" 9.40342965, 9.67414826, 9.74531406, 9.58881435, 9.75700495,\n",
|
2665 |
+
" 9.99215641, 10.05071724, 10.36530783, 10.75144927, 10.68404571,\n",
|
2666 |
+
" 10.23457009, 9.99215641, 9.58261997, 9.83185756]),\n",
|
2667 |
+
" 0.14802256973464573)"
|
2668 |
+
]
|
2669 |
+
},
|
2670 |
+
"execution_count": 10,
|
2671 |
+
"metadata": {},
|
2672 |
+
"output_type": "execute_result"
|
2673 |
+
}
|
2674 |
+
],
|
2675 |
+
"source": [
|
2676 |
+
"boxcox(data['#Passengers'])"
|
2677 |
+
]
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"cell_type": "code",
|
2681 |
+
"execution_count": 11,
|
2682 |
+
"metadata": {},
|
2683 |
+
"outputs": [],
|
2684 |
+
"source": [
|
2685 |
+
"# Apply box-cox transform and plot it\n",
|
2686 |
+
"data['Passengers_box_cox'], lam = boxcox(data['#Passengers'])"
|
2687 |
+
]
|
2688 |
+
},
|
2689 |
+
{
|
2690 |
+
"cell_type": "code",
|
2691 |
+
"execution_count": null,
|
2692 |
+
"metadata": {},
|
2693 |
+
"outputs": [],
|
2694 |
+
"source": [
|
2695 |
+
"plotting(title='Airline Passengers', data=data, x='Month', y='Passengers_box_cox',\n",
|
2696 |
+
" x_label='Date', y_label='Passengers<br>Box-Cox Transform', text=True, lam=lam)"
|
2697 |
+
]
|
2698 |
+
}
|
2699 |
+
],
|
2700 |
+
"metadata": {
|
2701 |
+
"kernelspec": {
|
2702 |
+
"display_name": "py311-kfp240-airflow251",
|
2703 |
+
"language": "python",
|
2704 |
+
"name": "python3"
|
2705 |
+
},
|
2706 |
+
"language_info": {
|
2707 |
+
"codemirror_mode": {
|
2708 |
+
"name": "ipython",
|
2709 |
+
"version": 3
|
2710 |
+
},
|
2711 |
+
"file_extension": ".py",
|
2712 |
+
"mimetype": "text/x-python",
|
2713 |
+
"name": "python",
|
2714 |
+
"nbconvert_exporter": "python",
|
2715 |
+
"pygments_lexer": "ipython3",
|
2716 |
+
"version": "3.11.5"
|
2717 |
+
}
|
2718 |
+
},
|
2719 |
+
"nbformat": 4,
|
2720 |
+
"nbformat_minor": 2
|
2721 |
+
}
|
coal-price-forecast.ipynb
CHANGED
@@ -13,7 +13,7 @@
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
-
"execution_count":
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
19 |
{
|
@@ -155,16 +155,23 @@
|
|
155 |
"[145 rows x 5 columns]"
|
156 |
]
|
157 |
},
|
158 |
-
"execution_count":
|
159 |
"metadata": {},
|
160 |
"output_type": "execute_result"
|
161 |
}
|
162 |
],
|
163 |
"source": [
|
164 |
-
"
|
165 |
-
"
|
166 |
]
|
167 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
{
|
169 |
"cell_type": "code",
|
170 |
"execution_count": 5,
|
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
+
"execution_count": 3,
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
19 |
{
|
|
|
155 |
"[145 rows x 5 columns]"
|
156 |
]
|
157 |
},
|
158 |
+
"execution_count": 3,
|
159 |
"metadata": {},
|
160 |
"output_type": "execute_result"
|
161 |
}
|
162 |
],
|
163 |
"source": [
|
164 |
+
"df_coal = pd.read_csv(\"../coal-price-data/coal_price_data.csv\")\n",
|
165 |
+
"df_coal"
|
166 |
]
|
167 |
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": null,
|
171 |
+
"metadata": {},
|
172 |
+
"outputs": [],
|
173 |
+
"source": []
|
174 |
+
},
|
175 |
{
|
176 |
"cell_type": "code",
|
177 |
"execution_count": 5,
|
cross_validation.ipynb
CHANGED
@@ -2474,11 +2474,9 @@
|
|
2474 |
"from sklearn.model_selection import KFold\n",
|
2475 |
"\n",
|
2476 |
"\n",
|
2477 |
-
"def plot_cross_val(
|
2478 |
-
"
|
2479 |
-
"
|
2480 |
-
" title_text: str) -> None:\n",
|
2481 |
-
" \n",
|
2482 |
" \"\"\"Function to plot the cross validation of various\n",
|
2483 |
" sklearn splitter objects.\"\"\"\n",
|
2484 |
"\n",
|
@@ -2486,51 +2484,63 @@
|
|
2486 |
" plot_data = []\n",
|
2487 |
"\n",
|
2488 |
" for train_index, valid_index in splitter_func(n_splits=n_splits).split(df):\n",
|
2489 |
-
" plot_data.append([train_index,
|
2490 |
-
" plot_data.append([valid_index,
|
2491 |
" split += 1\n",
|
2492 |
"\n",
|
2493 |
-
" plot_df = pd.DataFrame(
|
2494 |
-
"
|
2495 |
-
"
|
2496 |
"\n",
|
2497 |
" fig = go.Figure()\n",
|
2498 |
-
" for _, group in plot_df.groupby(
|
2499 |
-
" fig.add_trace(
|
2500 |
-
"
|
2501 |
-
"
|
2502 |
-
"
|
2503 |
-
"
|
2504 |
-
"
|
2505 |
-
"
|
2506 |
-
"
|
2507 |
-
"
|
2508 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
2509 |
"\n",
|
2510 |
-
" fig.update_layout(
|
2511 |
-
"
|
2512 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2513 |
"\n",
|
2514 |
" legend_names = set()\n",
|
2515 |
" fig.for_each_trace(\n",
|
2516 |
-
" lambda trace
|
2517 |
-
" trace.
|
2518 |
-
"
|
|
|
2519 |
"\n",
|
2520 |
" return fig.show()\n",
|
2521 |
-
" \n",
|
2522 |
-
" \n",
|
2523 |
-
"if __name__ == \"__main__\":\n",
|
2524 |
"\n",
|
|
|
|
|
2525 |
" # Read in the data\n",
|
2526 |
-
" data = pd.read_csv(
|
2527 |
-
" data[
|
2528 |
-
"
|
2529 |
" # Plot the cross validation\n",
|
2530 |
-
" plot_cross_val(
|
2531 |
-
"
|
2532 |
-
"
|
2533 |
-
" title_text='Cross-Validation')"
|
2534 |
]
|
2535 |
},
|
2536 |
{
|
@@ -4525,10 +4535,12 @@
|
|
4525 |
"from sklearn.model_selection import TimeSeriesSplit\n",
|
4526 |
"\n",
|
4527 |
"# Plot the time series cross validation splits\n",
|
4528 |
-
"plot_cross_val(
|
4529 |
-
"
|
4530 |
-
"
|
4531 |
-
"
|
|
|
|
|
4532 |
]
|
4533 |
},
|
4534 |
{
|
@@ -5764,23 +5776,31 @@
|
|
5764 |
"\n",
|
5765 |
"def plot_time_series(df: pd.DataFrame) -> None:\n",
|
5766 |
" \"\"\"General function to plot the passenger data.\"\"\"\n",
|
5767 |
-
"
|
5768 |
-
" fig = px.line(
|
5769 |
-
"
|
5770 |
-
"
|
5771 |
-
"
|
5772 |
-
"
|
5773 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5774 |
"\n",
|
5775 |
" return fig.show()\n",
|
5776 |
-
" \n",
|
5777 |
-
" \n",
|
5778 |
-
"if __name__ == \"__main__\":\n",
|
5779 |
"\n",
|
|
|
|
|
5780 |
" # Read in the data\n",
|
5781 |
-
" data = pd.read_csv(
|
5782 |
-
" data[
|
5783 |
-
"
|
5784 |
" # Plot the time series\n",
|
5785 |
" plot_time_series(df=data)"
|
5786 |
]
|
@@ -5799,42 +5819,51 @@
|
|
5799 |
"from statsmodels.tsa.holtwinters import ExponentialSmoothing\n",
|
5800 |
"\n",
|
5801 |
"\n",
|
5802 |
-
"def hyperparameter_tuning_season_cv(
|
5803 |
-
"
|
5804 |
-
"
|
5805 |
" \"\"\"Function to carry out cross-validation hyperparameter tuning\n",
|
5806 |
-
" for the seasonal parameter in a Holt Winters' model
|
5807 |
"\n",
|
5808 |
" tscv = TimeSeriesSplit(n_splits=n_splits)\n",
|
5809 |
" error_list = []\n",
|
5810 |
"\n",
|
5811 |
" for gamma in gammas:\n",
|
5812 |
-
" \n",
|
5813 |
" errors = []\n",
|
5814 |
-
"
|
5815 |
" for train_index, valid_index in tscv.split(df):\n",
|
5816 |
" train, valid = df.iloc[train_index], df.iloc[valid_index]\n",
|
5817 |
-
"
|
5818 |
-
" model = ExponentialSmoothing(
|
5819 |
-
"
|
5820 |
-
"
|
5821 |
-
" \n",
|
|
|
|
|
|
|
5822 |
" forecasts = model.forecast(len(valid))\n",
|
5823 |
-
" errors.append(
|
|
|
|
|
5824 |
"\n",
|
5825 |
" error_list.append([gamma, sum(errors) / len(errors)])\n",
|
5826 |
"\n",
|
5827 |
-
" return pd.DataFrame(error_list, columns=[
|
5828 |
-
"
|
5829 |
-
"
|
5830 |
-
"def plot_error_cv(df: pd.DataFrame
|
5831 |
-
" title: str) -> None: \n",
|
5832 |
" \"\"\"Bar chart to plot the errors from the different\n",
|
5833 |
" hyperparameters.\"\"\"\n",
|
5834 |
"\n",
|
5835 |
-
" fig = px.bar(df, x
|
5836 |
-
" fig.update_layout(
|
5837 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
5838 |
"\n",
|
5839 |
" return fig.show()"
|
5840 |
]
|
@@ -5846,8 +5875,8 @@
|
|
5846 |
"outputs": [],
|
5847 |
"source": [
|
5848 |
"# Read in the data\n",
|
5849 |
-
"data = pd.read_csv(
|
5850 |
-
"data[
|
5851 |
]
|
5852 |
},
|
5853 |
{
|
@@ -5980,9 +6009,9 @@
|
|
5980 |
],
|
5981 |
"source": [
|
5982 |
"# Carry out cv for hyperparameter tuning for the seasonal parameter\n",
|
5983 |
-
"error_df = hyperparameter_tuning_season_cv(
|
5984 |
-
"
|
5985 |
-
"
|
5986 |
]
|
5987 |
},
|
5988 |
{
|
@@ -7062,7 +7091,7 @@
|
|
7062 |
],
|
7063 |
"source": [
|
7064 |
"# Plot the tuning results\n",
|
7065 |
-
"plot_error_cv(df=error_df, title
|
7066 |
]
|
7067 |
},
|
7068 |
{
|
|
|
2474 |
"from sklearn.model_selection import KFold\n",
|
2475 |
"\n",
|
2476 |
"\n",
|
2477 |
+
"def plot_cross_val(\n",
|
2478 |
+
" n_splits: int, splitter_func, df: pd.DataFrame, title_text: str\n",
|
2479 |
+
") -> None:\n",
|
|
|
|
|
2480 |
" \"\"\"Function to plot the cross validation of various\n",
|
2481 |
" sklearn splitter objects.\"\"\"\n",
|
2482 |
"\n",
|
|
|
2484 |
" plot_data = []\n",
|
2485 |
"\n",
|
2486 |
" for train_index, valid_index in splitter_func(n_splits=n_splits).split(df):\n",
|
2487 |
+
" plot_data.append([train_index, \"Train\", f\"{split}\"])\n",
|
2488 |
+
" plot_data.append([valid_index, \"Test\", f\"{split}\"])\n",
|
2489 |
" split += 1\n",
|
2490 |
"\n",
|
2491 |
+
" plot_df = pd.DataFrame(\n",
|
2492 |
+
" plot_data, columns=[\"Index\", \"Dataset\", \"Split\"]\n",
|
2493 |
+
" ).explode(\"Index\")\n",
|
2494 |
"\n",
|
2495 |
" fig = go.Figure()\n",
|
2496 |
+
" for _, group in plot_df.groupby(\"Split\"):\n",
|
2497 |
+
" fig.add_trace(\n",
|
2498 |
+
" go.Scatter(\n",
|
2499 |
+
" x=group[\"Index\"].loc[group[\"Dataset\"] == \"Train\"],\n",
|
2500 |
+
" y=group[\"Split\"].loc[group[\"Dataset\"] == \"Train\"],\n",
|
2501 |
+
" name=\"Train\",\n",
|
2502 |
+
" line=dict(color=\"blue\", width=10),\n",
|
2503 |
+
" )\n",
|
2504 |
+
" )\n",
|
2505 |
+
" fig.add_trace(\n",
|
2506 |
+
" go.Scatter(\n",
|
2507 |
+
" x=group[\"Index\"].loc[group[\"Dataset\"] == \"Test\"],\n",
|
2508 |
+
" y=group[\"Split\"].loc[group[\"Dataset\"] == \"Test\"],\n",
|
2509 |
+
" name=\"Test\",\n",
|
2510 |
+
" line=dict(color=\"goldenrod\", width=10),\n",
|
2511 |
+
" )\n",
|
2512 |
+
" )\n",
|
2513 |
"\n",
|
2514 |
+
" fig.update_layout(\n",
|
2515 |
+
" template=\"simple_white\",\n",
|
2516 |
+
" font=dict(size=20),\n",
|
2517 |
+
" title_text=title_text,\n",
|
2518 |
+
" title_x=0.5,\n",
|
2519 |
+
" width=850,\n",
|
2520 |
+
" height=450,\n",
|
2521 |
+
" xaxis_title=\"Index\",\n",
|
2522 |
+
" yaxis_title=\"Split\",\n",
|
2523 |
+
" )\n",
|
2524 |
"\n",
|
2525 |
" legend_names = set()\n",
|
2526 |
" fig.for_each_trace(\n",
|
2527 |
+
" lambda trace: trace.update(showlegend=False)\n",
|
2528 |
+
" if (trace.name in legend_names)\n",
|
2529 |
+
" else legend_names.add(trace.name)\n",
|
2530 |
+
" )\n",
|
2531 |
"\n",
|
2532 |
" return fig.show()\n",
|
|
|
|
|
|
|
2533 |
"\n",
|
2534 |
+
"\n",
|
2535 |
+
"if __name__ == \"__main__\":\n",
|
2536 |
" # Read in the data\n",
|
2537 |
+
" data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")\n",
|
2538 |
+
" data[\"Month\"] = pd.to_datetime(data[\"Month\"])\n",
|
2539 |
+
"\n",
|
2540 |
" # Plot the cross validation\n",
|
2541 |
+
" plot_cross_val(\n",
|
2542 |
+
" n_splits=5, splitter_func=KFold, df=data, title_text=\"Cross-Validation\"\n",
|
2543 |
+
" )"
|
|
|
2544 |
]
|
2545 |
},
|
2546 |
{
|
|
|
4535 |
"from sklearn.model_selection import TimeSeriesSplit\n",
|
4536 |
"\n",
|
4537 |
"# Plot the time series cross validation splits\n",
|
4538 |
+
"plot_cross_val(\n",
|
4539 |
+
" n_splits=5,\n",
|
4540 |
+
" splitter_func=TimeSeriesSplit,\n",
|
4541 |
+
" df=data,\n",
|
4542 |
+
" title_text=\"Time Series Cross-Validation\",\n",
|
4543 |
+
")"
|
4544 |
]
|
4545 |
},
|
4546 |
{
|
|
|
5776 |
"\n",
|
5777 |
"def plot_time_series(df: pd.DataFrame) -> None:\n",
|
5778 |
" \"\"\"General function to plot the passenger data.\"\"\"\n",
|
5779 |
+
"\n",
|
5780 |
+
" fig = px.line(\n",
|
5781 |
+
" df,\n",
|
5782 |
+
" x=\"Month\",\n",
|
5783 |
+
" y=\"#Passengers\",\n",
|
5784 |
+
" labels={\"Month\": \"Date\", \"#Passengers\": \"Passengers\"},\n",
|
5785 |
+
" )\n",
|
5786 |
+
"\n",
|
5787 |
+
" fig.update_layout(\n",
|
5788 |
+
" template=\"simple_white\",\n",
|
5789 |
+
" font=dict(size=18),\n",
|
5790 |
+
" title_text=\"Airline Passengers\",\n",
|
5791 |
+
" width=650,\n",
|
5792 |
+
" title_x=0.5,\n",
|
5793 |
+
" height=400,\n",
|
5794 |
+
" )\n",
|
5795 |
"\n",
|
5796 |
" return fig.show()\n",
|
|
|
|
|
|
|
5797 |
"\n",
|
5798 |
+
"\n",
|
5799 |
+
"if __name__ == \"__main__\":\n",
|
5800 |
" # Read in the data\n",
|
5801 |
+
" data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")\n",
|
5802 |
+
" data[\"Month\"] = pd.to_datetime(data[\"Month\"])\n",
|
5803 |
+
"\n",
|
5804 |
" # Plot the time series\n",
|
5805 |
" plot_time_series(df=data)"
|
5806 |
]
|
|
|
5819 |
"from statsmodels.tsa.holtwinters import ExponentialSmoothing\n",
|
5820 |
"\n",
|
5821 |
"\n",
|
5822 |
+
"def hyperparameter_tuning_season_cv(\n",
|
5823 |
+
" n_splits: int, gammas: list[float], df: pd.DataFrame\n",
|
5824 |
+
") -> pd.DataFrame:\n",
|
5825 |
" \"\"\"Function to carry out cross-validation hyperparameter tuning\n",
|
5826 |
+
" for the seasonal parameter in a Holt Winters' model.\"\"\"\n",
|
5827 |
"\n",
|
5828 |
" tscv = TimeSeriesSplit(n_splits=n_splits)\n",
|
5829 |
" error_list = []\n",
|
5830 |
"\n",
|
5831 |
" for gamma in gammas:\n",
|
|
|
5832 |
" errors = []\n",
|
5833 |
+
"\n",
|
5834 |
" for train_index, valid_index in tscv.split(df):\n",
|
5835 |
" train, valid = df.iloc[train_index], df.iloc[valid_index]\n",
|
5836 |
+
"\n",
|
5837 |
+
" model = ExponentialSmoothing(\n",
|
5838 |
+
" train[\"#Passengers\"],\n",
|
5839 |
+
" trend=\"mul\",\n",
|
5840 |
+
" seasonal=\"mul\",\n",
|
5841 |
+
" seasonal_periods=12,\n",
|
5842 |
+
" ).fit(smoothing_seasonal=gamma)\n",
|
5843 |
+
"\n",
|
5844 |
" forecasts = model.forecast(len(valid))\n",
|
5845 |
+
" errors.append(\n",
|
5846 |
+
" mean_absolute_percentage_error(valid[\"#Passengers\"], forecasts)\n",
|
5847 |
+
" )\n",
|
5848 |
"\n",
|
5849 |
" error_list.append([gamma, sum(errors) / len(errors)])\n",
|
5850 |
"\n",
|
5851 |
+
" return pd.DataFrame(error_list, columns=[\"Gamma\", \"MAPE\"])\n",
|
5852 |
+
"\n",
|
5853 |
+
"\n",
|
5854 |
+
"def plot_error_cv(df: pd.DataFrame, title: str) -> None:\n",
|
|
|
5855 |
" \"\"\"Bar chart to plot the errors from the different\n",
|
5856 |
" hyperparameters.\"\"\"\n",
|
5857 |
"\n",
|
5858 |
+
" fig = px.bar(df, x=\"Gamma\", y=\"MAPE\")\n",
|
5859 |
+
" fig.update_layout(\n",
|
5860 |
+
" template=\"simple_white\",\n",
|
5861 |
+
" font=dict(size=18),\n",
|
5862 |
+
" title_text=title,\n",
|
5863 |
+
" width=800,\n",
|
5864 |
+
" title_x=0.5,\n",
|
5865 |
+
" height=400,\n",
|
5866 |
+
" )\n",
|
5867 |
"\n",
|
5868 |
" return fig.show()"
|
5869 |
]
|
|
|
5875 |
"outputs": [],
|
5876 |
"source": [
|
5877 |
"# Read in the data\n",
|
5878 |
+
"data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")\n",
|
5879 |
+
"data[\"Month\"] = pd.to_datetime(data[\"Month\"])"
|
5880 |
]
|
5881 |
},
|
5882 |
{
|
|
|
6009 |
],
|
6010 |
"source": [
|
6011 |
"# Carry out cv for hyperparameter tuning for the seasonal parameter\n",
|
6012 |
+
"error_df = hyperparameter_tuning_season_cv(\n",
|
6013 |
+
" df=data, n_splits=4, gammas=list(np.arange(0, 1.1, 0.1))\n",
|
6014 |
+
")"
|
6015 |
]
|
6016 |
},
|
6017 |
{
|
|
|
7091 |
],
|
7092 |
"source": [
|
7093 |
"# Plot the tuning results\n",
|
7094 |
+
"plot_error_cv(df=error_df, title=\"Hyperparameter Results\")"
|
7095 |
]
|
7096 |
},
|
7097 |
{
|
multiple_timeseries_forecast.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|