ibnummuhammad
commited on
Commit
•
bc7c2f9
1
Parent(s):
8590547
Add multiple_timeseries_forecast.ipynb
Browse files- autoregression.ipynb +0 -0
- cross_validation.ipynb +0 -0
- multiple_timeseries_forecast.ipynb +0 -0
- partial_autocorrelation.ipynb +0 -0
- residuals.ipynb +2898 -0
- stationary.ipynb +1 -1
autoregression.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cross_validation.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
multiple_timeseries_forecast.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
partial_autocorrelation.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
residuals.ipynb
ADDED
@@ -0,0 +1,2898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Import packages\n",
|
10 |
+
"import plotly.graph_objects as go\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"import plotly.express as px\n",
|
13 |
+
"from statsmodels.tsa.holtwinters import ExponentialSmoothing"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 3,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"# Read in the data\n",
|
23 |
+
"data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 4,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"data[\"Month\"] = pd.to_datetime(data[\"Month\"])"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 5,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# Split train and test\n",
|
42 |
+
"train = data.iloc[: -int(len(data) * 0.2)]\n",
|
43 |
+
"test = data.iloc[-int(len(data) * 0.2) :]"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 6,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"def plot_func(forecast: list[float], title: str, save_path: str = None) -> None:\n",
|
53 |
+
" \"\"\"Function to plot the forecasts.\"\"\"\n",
|
54 |
+
" fig = go.Figure()\n",
|
55 |
+
" fig.add_trace(\n",
|
56 |
+
" go.Scatter(x=train[\"Month\"], y=train[\"#Passengers\"], name=\"Train\")\n",
|
57 |
+
" )\n",
|
58 |
+
" fig.add_trace(\n",
|
59 |
+
" go.Scatter(x=test[\"Month\"], y=test[\"#Passengers\"], name=\"Test\")\n",
|
60 |
+
" )\n",
|
61 |
+
" fig.add_trace(go.Scatter(x=test[\"Month\"], y=forecast, name=\"Forecast\"))\n",
|
62 |
+
" fig.update_layout(\n",
|
63 |
+
" template=\"simple_white\",\n",
|
64 |
+
" font=dict(size=18),\n",
|
65 |
+
" title_text=title,\n",
|
66 |
+
" width=700,\n",
|
67 |
+
" title_x=0.5,\n",
|
68 |
+
" height=400,\n",
|
69 |
+
" xaxis_title=\"Date\",\n",
|
70 |
+
" yaxis_title=\"Passenger Volume\",\n",
|
71 |
+
" )\n",
|
72 |
+
"\n",
|
73 |
+
" return fig.show()"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 7,
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [
|
81 |
+
{
|
82 |
+
"name": "stderr",
|
83 |
+
"output_type": "stream",
|
84 |
+
"text": [
|
85 |
+
"/home/ibnu/miniconda3/envs/py311-kfp240-airflow251/lib/python3.11/site-packages/statsmodels/tsa/holtwinters/model.py:83: RuntimeWarning: overflow encountered in matmul\n",
|
86 |
+
" return err.T @ err\n"
|
87 |
+
]
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"source": [
|
91 |
+
"# Fit Holt Winters model and get forecasts\n",
|
92 |
+
"model = ExponentialSmoothing(\n",
|
93 |
+
" train[\"#Passengers\"], trend=\"mul\", seasonal=\"mul\", seasonal_periods=12\n",
|
94 |
+
").fit(optimized=True)"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 13,
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [
|
102 |
+
{
|
103 |
+
"data": {
|
104 |
+
"text/plain": [
|
105 |
+
"<statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper at 0x7fc76fba6ed0>"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
"execution_count": 13,
|
109 |
+
"metadata": {},
|
110 |
+
"output_type": "execute_result"
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"source": [
|
114 |
+
"model"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 8,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"forecasts = model.forecast(len(test))"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 12,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"text/html": [
|
134 |
+
"<div>\n",
|
135 |
+
"<style scoped>\n",
|
136 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
137 |
+
" vertical-align: middle;\n",
|
138 |
+
" }\n",
|
139 |
+
"\n",
|
140 |
+
" .dataframe tbody tr th {\n",
|
141 |
+
" vertical-align: top;\n",
|
142 |
+
" }\n",
|
143 |
+
"\n",
|
144 |
+
" .dataframe thead th {\n",
|
145 |
+
" text-align: right;\n",
|
146 |
+
" }\n",
|
147 |
+
"</style>\n",
|
148 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
149 |
+
" <thead>\n",
|
150 |
+
" <tr style=\"text-align: right;\">\n",
|
151 |
+
" <th></th>\n",
|
152 |
+
" <th>Month</th>\n",
|
153 |
+
" <th>#Passengers</th>\n",
|
154 |
+
" </tr>\n",
|
155 |
+
" </thead>\n",
|
156 |
+
" <tbody>\n",
|
157 |
+
" <tr>\n",
|
158 |
+
" <th>116</th>\n",
|
159 |
+
" <td>1958-09-01</td>\n",
|
160 |
+
" <td>404</td>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" <tr>\n",
|
163 |
+
" <th>117</th>\n",
|
164 |
+
" <td>1958-10-01</td>\n",
|
165 |
+
" <td>359</td>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" <tr>\n",
|
168 |
+
" <th>118</th>\n",
|
169 |
+
" <td>1958-11-01</td>\n",
|
170 |
+
" <td>310</td>\n",
|
171 |
+
" </tr>\n",
|
172 |
+
" <tr>\n",
|
173 |
+
" <th>119</th>\n",
|
174 |
+
" <td>1958-12-01</td>\n",
|
175 |
+
" <td>337</td>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" <tr>\n",
|
178 |
+
" <th>120</th>\n",
|
179 |
+
" <td>1959-01-01</td>\n",
|
180 |
+
" <td>360</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>121</th>\n",
|
184 |
+
" <td>1959-02-01</td>\n",
|
185 |
+
" <td>342</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>122</th>\n",
|
189 |
+
" <td>1959-03-01</td>\n",
|
190 |
+
" <td>406</td>\n",
|
191 |
+
" </tr>\n",
|
192 |
+
" <tr>\n",
|
193 |
+
" <th>123</th>\n",
|
194 |
+
" <td>1959-04-01</td>\n",
|
195 |
+
" <td>396</td>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" <tr>\n",
|
198 |
+
" <th>124</th>\n",
|
199 |
+
" <td>1959-05-01</td>\n",
|
200 |
+
" <td>420</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" <tr>\n",
|
203 |
+
" <th>125</th>\n",
|
204 |
+
" <td>1959-06-01</td>\n",
|
205 |
+
" <td>472</td>\n",
|
206 |
+
" </tr>\n",
|
207 |
+
" <tr>\n",
|
208 |
+
" <th>126</th>\n",
|
209 |
+
" <td>1959-07-01</td>\n",
|
210 |
+
" <td>548</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>127</th>\n",
|
214 |
+
" <td>1959-08-01</td>\n",
|
215 |
+
" <td>559</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>128</th>\n",
|
219 |
+
" <td>1959-09-01</td>\n",
|
220 |
+
" <td>463</td>\n",
|
221 |
+
" </tr>\n",
|
222 |
+
" <tr>\n",
|
223 |
+
" <th>129</th>\n",
|
224 |
+
" <td>1959-10-01</td>\n",
|
225 |
+
" <td>407</td>\n",
|
226 |
+
" </tr>\n",
|
227 |
+
" <tr>\n",
|
228 |
+
" <th>130</th>\n",
|
229 |
+
" <td>1959-11-01</td>\n",
|
230 |
+
" <td>362</td>\n",
|
231 |
+
" </tr>\n",
|
232 |
+
" <tr>\n",
|
233 |
+
" <th>131</th>\n",
|
234 |
+
" <td>1959-12-01</td>\n",
|
235 |
+
" <td>405</td>\n",
|
236 |
+
" </tr>\n",
|
237 |
+
" <tr>\n",
|
238 |
+
" <th>132</th>\n",
|
239 |
+
" <td>1960-01-01</td>\n",
|
240 |
+
" <td>417</td>\n",
|
241 |
+
" </tr>\n",
|
242 |
+
" <tr>\n",
|
243 |
+
" <th>133</th>\n",
|
244 |
+
" <td>1960-02-01</td>\n",
|
245 |
+
" <td>391</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <th>134</th>\n",
|
249 |
+
" <td>1960-03-01</td>\n",
|
250 |
+
" <td>419</td>\n",
|
251 |
+
" </tr>\n",
|
252 |
+
" <tr>\n",
|
253 |
+
" <th>135</th>\n",
|
254 |
+
" <td>1960-04-01</td>\n",
|
255 |
+
" <td>461</td>\n",
|
256 |
+
" </tr>\n",
|
257 |
+
" <tr>\n",
|
258 |
+
" <th>136</th>\n",
|
259 |
+
" <td>1960-05-01</td>\n",
|
260 |
+
" <td>472</td>\n",
|
261 |
+
" </tr>\n",
|
262 |
+
" <tr>\n",
|
263 |
+
" <th>137</th>\n",
|
264 |
+
" <td>1960-06-01</td>\n",
|
265 |
+
" <td>535</td>\n",
|
266 |
+
" </tr>\n",
|
267 |
+
" <tr>\n",
|
268 |
+
" <th>138</th>\n",
|
269 |
+
" <td>1960-07-01</td>\n",
|
270 |
+
" <td>622</td>\n",
|
271 |
+
" </tr>\n",
|
272 |
+
" <tr>\n",
|
273 |
+
" <th>139</th>\n",
|
274 |
+
" <td>1960-08-01</td>\n",
|
275 |
+
" <td>606</td>\n",
|
276 |
+
" </tr>\n",
|
277 |
+
" <tr>\n",
|
278 |
+
" <th>140</th>\n",
|
279 |
+
" <td>1960-09-01</td>\n",
|
280 |
+
" <td>508</td>\n",
|
281 |
+
" </tr>\n",
|
282 |
+
" <tr>\n",
|
283 |
+
" <th>141</th>\n",
|
284 |
+
" <td>1960-10-01</td>\n",
|
285 |
+
" <td>461</td>\n",
|
286 |
+
" </tr>\n",
|
287 |
+
" <tr>\n",
|
288 |
+
" <th>142</th>\n",
|
289 |
+
" <td>1960-11-01</td>\n",
|
290 |
+
" <td>390</td>\n",
|
291 |
+
" </tr>\n",
|
292 |
+
" <tr>\n",
|
293 |
+
" <th>143</th>\n",
|
294 |
+
" <td>1960-12-01</td>\n",
|
295 |
+
" <td>432</td>\n",
|
296 |
+
" </tr>\n",
|
297 |
+
" </tbody>\n",
|
298 |
+
"</table>\n",
|
299 |
+
"</div>"
|
300 |
+
],
|
301 |
+
"text/plain": [
|
302 |
+
" Month #Passengers\n",
|
303 |
+
"116 1958-09-01 404\n",
|
304 |
+
"117 1958-10-01 359\n",
|
305 |
+
"118 1958-11-01 310\n",
|
306 |
+
"119 1958-12-01 337\n",
|
307 |
+
"120 1959-01-01 360\n",
|
308 |
+
"121 1959-02-01 342\n",
|
309 |
+
"122 1959-03-01 406\n",
|
310 |
+
"123 1959-04-01 396\n",
|
311 |
+
"124 1959-05-01 420\n",
|
312 |
+
"125 1959-06-01 472\n",
|
313 |
+
"126 1959-07-01 548\n",
|
314 |
+
"127 1959-08-01 559\n",
|
315 |
+
"128 1959-09-01 463\n",
|
316 |
+
"129 1959-10-01 407\n",
|
317 |
+
"130 1959-11-01 362\n",
|
318 |
+
"131 1959-12-01 405\n",
|
319 |
+
"132 1960-01-01 417\n",
|
320 |
+
"133 1960-02-01 391\n",
|
321 |
+
"134 1960-03-01 419\n",
|
322 |
+
"135 1960-04-01 461\n",
|
323 |
+
"136 1960-05-01 472\n",
|
324 |
+
"137 1960-06-01 535\n",
|
325 |
+
"138 1960-07-01 622\n",
|
326 |
+
"139 1960-08-01 606\n",
|
327 |
+
"140 1960-09-01 508\n",
|
328 |
+
"141 1960-10-01 461\n",
|
329 |
+
"142 1960-11-01 390\n",
|
330 |
+
"143 1960-12-01 432"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
"execution_count": 12,
|
334 |
+
"metadata": {},
|
335 |
+
"output_type": "execute_result"
|
336 |
+
}
|
337 |
+
],
|
338 |
+
"source": [
|
339 |
+
"test"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": 10,
|
345 |
+
"metadata": {},
|
346 |
+
"outputs": [
|
347 |
+
{
|
348 |
+
"data": {
|
349 |
+
"text/plain": [
|
350 |
+
"116 421.344912\n",
|
351 |
+
"117 362.116133\n",
|
352 |
+
"118 318.903773\n",
|
353 |
+
"119 356.258190\n",
|
354 |
+
"120 366.281250\n",
|
355 |
+
"121 349.727205\n",
|
356 |
+
"122 408.310119\n",
|
357 |
+
"123 402.054810\n",
|
358 |
+
"124 422.533093\n",
|
359 |
+
"125 506.604413\n",
|
360 |
+
"126 566.761747\n",
|
361 |
+
"127 553.397062\n",
|
362 |
+
"128 476.524463\n",
|
363 |
+
"129 409.539052\n",
|
364 |
+
"130 360.667579\n",
|
365 |
+
"131 402.913950\n",
|
366 |
+
"132 414.249635\n",
|
367 |
+
"133 395.527664\n",
|
368 |
+
"134 461.782627\n",
|
369 |
+
"135 454.708120\n",
|
370 |
+
"136 477.868249\n",
|
371 |
+
"137 572.949593\n",
|
372 |
+
"138 640.985163\n",
|
373 |
+
"139 625.870233\n",
|
374 |
+
"140 538.930358\n",
|
375 |
+
"141 463.172502\n",
|
376 |
+
"142 407.900795\n",
|
377 |
+
"143 455.679773\n",
|
378 |
+
"dtype: float64"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
"execution_count": 10,
|
382 |
+
"metadata": {},
|
383 |
+
"output_type": "execute_result"
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"source": [
|
387 |
+
"forecasts"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": 9,
|
393 |
+
"metadata": {},
|
394 |
+
"outputs": [
|
395 |
+
{
|
396 |
+
"data": {
|
397 |
+
"application/vnd.plotly.v1+json": {
|
398 |
+
"config": {
|
399 |
+
"plotlyServerURL": "https://plot.ly"
|
400 |
+
},
|
401 |
+
"data": [
|
402 |
+
{
|
403 |
+
"name": "Train",
|
404 |
+
"type": "scatter",
|
405 |
+
"x": [
|
406 |
+
"1949-01-01T00:00:00",
|
407 |
+
"1949-02-01T00:00:00",
|
408 |
+
"1949-03-01T00:00:00",
|
409 |
+
"1949-04-01T00:00:00",
|
410 |
+
"1949-05-01T00:00:00",
|
411 |
+
"1949-06-01T00:00:00",
|
412 |
+
"1949-07-01T00:00:00",
|
413 |
+
"1949-08-01T00:00:00",
|
414 |
+
"1949-09-01T00:00:00",
|
415 |
+
"1949-10-01T00:00:00",
|
416 |
+
"1949-11-01T00:00:00",
|
417 |
+
"1949-12-01T00:00:00",
|
418 |
+
"1950-01-01T00:00:00",
|
419 |
+
"1950-02-01T00:00:00",
|
420 |
+
"1950-03-01T00:00:00",
|
421 |
+
"1950-04-01T00:00:00",
|
422 |
+
"1950-05-01T00:00:00",
|
423 |
+
"1950-06-01T00:00:00",
|
424 |
+
"1950-07-01T00:00:00",
|
425 |
+
"1950-08-01T00:00:00",
|
426 |
+
"1950-09-01T00:00:00",
|
427 |
+
"1950-10-01T00:00:00",
|
428 |
+
"1950-11-01T00:00:00",
|
429 |
+
"1950-12-01T00:00:00",
|
430 |
+
"1951-01-01T00:00:00",
|
431 |
+
"1951-02-01T00:00:00",
|
432 |
+
"1951-03-01T00:00:00",
|
433 |
+
"1951-04-01T00:00:00",
|
434 |
+
"1951-05-01T00:00:00",
|
435 |
+
"1951-06-01T00:00:00",
|
436 |
+
"1951-07-01T00:00:00",
|
437 |
+
"1951-08-01T00:00:00",
|
438 |
+
"1951-09-01T00:00:00",
|
439 |
+
"1951-10-01T00:00:00",
|
440 |
+
"1951-11-01T00:00:00",
|
441 |
+
"1951-12-01T00:00:00",
|
442 |
+
"1952-01-01T00:00:00",
|
443 |
+
"1952-02-01T00:00:00",
|
444 |
+
"1952-03-01T00:00:00",
|
445 |
+
"1952-04-01T00:00:00",
|
446 |
+
"1952-05-01T00:00:00",
|
447 |
+
"1952-06-01T00:00:00",
|
448 |
+
"1952-07-01T00:00:00",
|
449 |
+
"1952-08-01T00:00:00",
|
450 |
+
"1952-09-01T00:00:00",
|
451 |
+
"1952-10-01T00:00:00",
|
452 |
+
"1952-11-01T00:00:00",
|
453 |
+
"1952-12-01T00:00:00",
|
454 |
+
"1953-01-01T00:00:00",
|
455 |
+
"1953-02-01T00:00:00",
|
456 |
+
"1953-03-01T00:00:00",
|
457 |
+
"1953-04-01T00:00:00",
|
458 |
+
"1953-05-01T00:00:00",
|
459 |
+
"1953-06-01T00:00:00",
|
460 |
+
"1953-07-01T00:00:00",
|
461 |
+
"1953-08-01T00:00:00",
|
462 |
+
"1953-09-01T00:00:00",
|
463 |
+
"1953-10-01T00:00:00",
|
464 |
+
"1953-11-01T00:00:00",
|
465 |
+
"1953-12-01T00:00:00",
|
466 |
+
"1954-01-01T00:00:00",
|
467 |
+
"1954-02-01T00:00:00",
|
468 |
+
"1954-03-01T00:00:00",
|
469 |
+
"1954-04-01T00:00:00",
|
470 |
+
"1954-05-01T00:00:00",
|
471 |
+
"1954-06-01T00:00:00",
|
472 |
+
"1954-07-01T00:00:00",
|
473 |
+
"1954-08-01T00:00:00",
|
474 |
+
"1954-09-01T00:00:00",
|
475 |
+
"1954-10-01T00:00:00",
|
476 |
+
"1954-11-01T00:00:00",
|
477 |
+
"1954-12-01T00:00:00",
|
478 |
+
"1955-01-01T00:00:00",
|
479 |
+
"1955-02-01T00:00:00",
|
480 |
+
"1955-03-01T00:00:00",
|
481 |
+
"1955-04-01T00:00:00",
|
482 |
+
"1955-05-01T00:00:00",
|
483 |
+
"1955-06-01T00:00:00",
|
484 |
+
"1955-07-01T00:00:00",
|
485 |
+
"1955-08-01T00:00:00",
|
486 |
+
"1955-09-01T00:00:00",
|
487 |
+
"1955-10-01T00:00:00",
|
488 |
+
"1955-11-01T00:00:00",
|
489 |
+
"1955-12-01T00:00:00",
|
490 |
+
"1956-01-01T00:00:00",
|
491 |
+
"1956-02-01T00:00:00",
|
492 |
+
"1956-03-01T00:00:00",
|
493 |
+
"1956-04-01T00:00:00",
|
494 |
+
"1956-05-01T00:00:00",
|
495 |
+
"1956-06-01T00:00:00",
|
496 |
+
"1956-07-01T00:00:00",
|
497 |
+
"1956-08-01T00:00:00",
|
498 |
+
"1956-09-01T00:00:00",
|
499 |
+
"1956-10-01T00:00:00",
|
500 |
+
"1956-11-01T00:00:00",
|
501 |
+
"1956-12-01T00:00:00",
|
502 |
+
"1957-01-01T00:00:00",
|
503 |
+
"1957-02-01T00:00:00",
|
504 |
+
"1957-03-01T00:00:00",
|
505 |
+
"1957-04-01T00:00:00",
|
506 |
+
"1957-05-01T00:00:00",
|
507 |
+
"1957-06-01T00:00:00",
|
508 |
+
"1957-07-01T00:00:00",
|
509 |
+
"1957-08-01T00:00:00",
|
510 |
+
"1957-09-01T00:00:00",
|
511 |
+
"1957-10-01T00:00:00",
|
512 |
+
"1957-11-01T00:00:00",
|
513 |
+
"1957-12-01T00:00:00",
|
514 |
+
"1958-01-01T00:00:00",
|
515 |
+
"1958-02-01T00:00:00",
|
516 |
+
"1958-03-01T00:00:00",
|
517 |
+
"1958-04-01T00:00:00",
|
518 |
+
"1958-05-01T00:00:00",
|
519 |
+
"1958-06-01T00:00:00",
|
520 |
+
"1958-07-01T00:00:00",
|
521 |
+
"1958-08-01T00:00:00"
|
522 |
+
],
|
523 |
+
"y": [
|
524 |
+
112,
|
525 |
+
118,
|
526 |
+
132,
|
527 |
+
129,
|
528 |
+
121,
|
529 |
+
135,
|
530 |
+
148,
|
531 |
+
148,
|
532 |
+
136,
|
533 |
+
119,
|
534 |
+
104,
|
535 |
+
118,
|
536 |
+
115,
|
537 |
+
126,
|
538 |
+
141,
|
539 |
+
135,
|
540 |
+
125,
|
541 |
+
149,
|
542 |
+
170,
|
543 |
+
170,
|
544 |
+
158,
|
545 |
+
133,
|
546 |
+
114,
|
547 |
+
140,
|
548 |
+
145,
|
549 |
+
150,
|
550 |
+
178,
|
551 |
+
163,
|
552 |
+
172,
|
553 |
+
178,
|
554 |
+
199,
|
555 |
+
199,
|
556 |
+
184,
|
557 |
+
162,
|
558 |
+
146,
|
559 |
+
166,
|
560 |
+
171,
|
561 |
+
180,
|
562 |
+
193,
|
563 |
+
181,
|
564 |
+
183,
|
565 |
+
218,
|
566 |
+
230,
|
567 |
+
242,
|
568 |
+
209,
|
569 |
+
191,
|
570 |
+
172,
|
571 |
+
194,
|
572 |
+
196,
|
573 |
+
196,
|
574 |
+
236,
|
575 |
+
235,
|
576 |
+
229,
|
577 |
+
243,
|
578 |
+
264,
|
579 |
+
272,
|
580 |
+
237,
|
581 |
+
211,
|
582 |
+
180,
|
583 |
+
201,
|
584 |
+
204,
|
585 |
+
188,
|
586 |
+
235,
|
587 |
+
227,
|
588 |
+
234,
|
589 |
+
264,
|
590 |
+
302,
|
591 |
+
293,
|
592 |
+
259,
|
593 |
+
229,
|
594 |
+
203,
|
595 |
+
229,
|
596 |
+
242,
|
597 |
+
233,
|
598 |
+
267,
|
599 |
+
269,
|
600 |
+
270,
|
601 |
+
315,
|
602 |
+
364,
|
603 |
+
347,
|
604 |
+
312,
|
605 |
+
274,
|
606 |
+
237,
|
607 |
+
278,
|
608 |
+
284,
|
609 |
+
277,
|
610 |
+
317,
|
611 |
+
313,
|
612 |
+
318,
|
613 |
+
374,
|
614 |
+
413,
|
615 |
+
405,
|
616 |
+
355,
|
617 |
+
306,
|
618 |
+
271,
|
619 |
+
306,
|
620 |
+
315,
|
621 |
+
301,
|
622 |
+
356,
|
623 |
+
348,
|
624 |
+
355,
|
625 |
+
422,
|
626 |
+
465,
|
627 |
+
467,
|
628 |
+
404,
|
629 |
+
347,
|
630 |
+
305,
|
631 |
+
336,
|
632 |
+
340,
|
633 |
+
318,
|
634 |
+
362,
|
635 |
+
348,
|
636 |
+
363,
|
637 |
+
435,
|
638 |
+
491,
|
639 |
+
505
|
640 |
+
]
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"name": "Test",
|
644 |
+
"type": "scatter",
|
645 |
+
"x": [
|
646 |
+
"1958-09-01T00:00:00",
|
647 |
+
"1958-10-01T00:00:00",
|
648 |
+
"1958-11-01T00:00:00",
|
649 |
+
"1958-12-01T00:00:00",
|
650 |
+
"1959-01-01T00:00:00",
|
651 |
+
"1959-02-01T00:00:00",
|
652 |
+
"1959-03-01T00:00:00",
|
653 |
+
"1959-04-01T00:00:00",
|
654 |
+
"1959-05-01T00:00:00",
|
655 |
+
"1959-06-01T00:00:00",
|
656 |
+
"1959-07-01T00:00:00",
|
657 |
+
"1959-08-01T00:00:00",
|
658 |
+
"1959-09-01T00:00:00",
|
659 |
+
"1959-10-01T00:00:00",
|
660 |
+
"1959-11-01T00:00:00",
|
661 |
+
"1959-12-01T00:00:00",
|
662 |
+
"1960-01-01T00:00:00",
|
663 |
+
"1960-02-01T00:00:00",
|
664 |
+
"1960-03-01T00:00:00",
|
665 |
+
"1960-04-01T00:00:00",
|
666 |
+
"1960-05-01T00:00:00",
|
667 |
+
"1960-06-01T00:00:00",
|
668 |
+
"1960-07-01T00:00:00",
|
669 |
+
"1960-08-01T00:00:00",
|
670 |
+
"1960-09-01T00:00:00",
|
671 |
+
"1960-10-01T00:00:00",
|
672 |
+
"1960-11-01T00:00:00",
|
673 |
+
"1960-12-01T00:00:00"
|
674 |
+
],
|
675 |
+
"y": [
|
676 |
+
404,
|
677 |
+
359,
|
678 |
+
310,
|
679 |
+
337,
|
680 |
+
360,
|
681 |
+
342,
|
682 |
+
406,
|
683 |
+
396,
|
684 |
+
420,
|
685 |
+
472,
|
686 |
+
548,
|
687 |
+
559,
|
688 |
+
463,
|
689 |
+
407,
|
690 |
+
362,
|
691 |
+
405,
|
692 |
+
417,
|
693 |
+
391,
|
694 |
+
419,
|
695 |
+
461,
|
696 |
+
472,
|
697 |
+
535,
|
698 |
+
622,
|
699 |
+
606,
|
700 |
+
508,
|
701 |
+
461,
|
702 |
+
390,
|
703 |
+
432
|
704 |
+
]
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"name": "Forecast",
|
708 |
+
"type": "scatter",
|
709 |
+
"x": [
|
710 |
+
"1958-09-01T00:00:00",
|
711 |
+
"1958-10-01T00:00:00",
|
712 |
+
"1958-11-01T00:00:00",
|
713 |
+
"1958-12-01T00:00:00",
|
714 |
+
"1959-01-01T00:00:00",
|
715 |
+
"1959-02-01T00:00:00",
|
716 |
+
"1959-03-01T00:00:00",
|
717 |
+
"1959-04-01T00:00:00",
|
718 |
+
"1959-05-01T00:00:00",
|
719 |
+
"1959-06-01T00:00:00",
|
720 |
+
"1959-07-01T00:00:00",
|
721 |
+
"1959-08-01T00:00:00",
|
722 |
+
"1959-09-01T00:00:00",
|
723 |
+
"1959-10-01T00:00:00",
|
724 |
+
"1959-11-01T00:00:00",
|
725 |
+
"1959-12-01T00:00:00",
|
726 |
+
"1960-01-01T00:00:00",
|
727 |
+
"1960-02-01T00:00:00",
|
728 |
+
"1960-03-01T00:00:00",
|
729 |
+
"1960-04-01T00:00:00",
|
730 |
+
"1960-05-01T00:00:00",
|
731 |
+
"1960-06-01T00:00:00",
|
732 |
+
"1960-07-01T00:00:00",
|
733 |
+
"1960-08-01T00:00:00",
|
734 |
+
"1960-09-01T00:00:00",
|
735 |
+
"1960-10-01T00:00:00",
|
736 |
+
"1960-11-01T00:00:00",
|
737 |
+
"1960-12-01T00:00:00"
|
738 |
+
],
|
739 |
+
"y": [
|
740 |
+
421.34491174994423,
|
741 |
+
362.11613305869326,
|
742 |
+
318.90377321002904,
|
743 |
+
356.258190007722,
|
744 |
+
366.2812497027325,
|
745 |
+
349.72720536821623,
|
746 |
+
408.31011882844285,
|
747 |
+
402.05481024174316,
|
748 |
+
422.53309317530835,
|
749 |
+
506.6044129226578,
|
750 |
+
566.7617466950583,
|
751 |
+
553.3970624385711,
|
752 |
+
476.5244631477535,
|
753 |
+
409.53905242682004,
|
754 |
+
360.66757918958575,
|
755 |
+
402.91395007084134,
|
756 |
+
414.24963493867546,
|
757 |
+
395.52766424567,
|
758 |
+
461.7826268850033,
|
759 |
+
454.7081197936026,
|
760 |
+
477.8682494379266,
|
761 |
+
572.9495934663657,
|
762 |
+
640.9851633305773,
|
763 |
+
625.870232989989,
|
764 |
+
538.9303576377762,
|
765 |
+
463.1725022742153,
|
766 |
+
407.90079518063607,
|
767 |
+
455.67977302688723
|
768 |
+
]
|
769 |
+
}
|
770 |
+
],
|
771 |
+
"layout": {
|
772 |
+
"font": {
|
773 |
+
"size": 18
|
774 |
+
},
|
775 |
+
"height": 400,
|
776 |
+
"template": {
|
777 |
+
"data": {
|
778 |
+
"bar": [
|
779 |
+
{
|
780 |
+
"error_x": {
|
781 |
+
"color": "rgb(36,36,36)"
|
782 |
+
},
|
783 |
+
"error_y": {
|
784 |
+
"color": "rgb(36,36,36)"
|
785 |
+
},
|
786 |
+
"marker": {
|
787 |
+
"line": {
|
788 |
+
"color": "white",
|
789 |
+
"width": 0.5
|
790 |
+
},
|
791 |
+
"pattern": {
|
792 |
+
"fillmode": "overlay",
|
793 |
+
"size": 10,
|
794 |
+
"solidity": 0.2
|
795 |
+
}
|
796 |
+
},
|
797 |
+
"type": "bar"
|
798 |
+
}
|
799 |
+
],
|
800 |
+
"barpolar": [
|
801 |
+
{
|
802 |
+
"marker": {
|
803 |
+
"line": {
|
804 |
+
"color": "white",
|
805 |
+
"width": 0.5
|
806 |
+
},
|
807 |
+
"pattern": {
|
808 |
+
"fillmode": "overlay",
|
809 |
+
"size": 10,
|
810 |
+
"solidity": 0.2
|
811 |
+
}
|
812 |
+
},
|
813 |
+
"type": "barpolar"
|
814 |
+
}
|
815 |
+
],
|
816 |
+
"carpet": [
|
817 |
+
{
|
818 |
+
"aaxis": {
|
819 |
+
"endlinecolor": "rgb(36,36,36)",
|
820 |
+
"gridcolor": "white",
|
821 |
+
"linecolor": "white",
|
822 |
+
"minorgridcolor": "white",
|
823 |
+
"startlinecolor": "rgb(36,36,36)"
|
824 |
+
},
|
825 |
+
"baxis": {
|
826 |
+
"endlinecolor": "rgb(36,36,36)",
|
827 |
+
"gridcolor": "white",
|
828 |
+
"linecolor": "white",
|
829 |
+
"minorgridcolor": "white",
|
830 |
+
"startlinecolor": "rgb(36,36,36)"
|
831 |
+
},
|
832 |
+
"type": "carpet"
|
833 |
+
}
|
834 |
+
],
|
835 |
+
"choropleth": [
|
836 |
+
{
|
837 |
+
"colorbar": {
|
838 |
+
"outlinewidth": 1,
|
839 |
+
"tickcolor": "rgb(36,36,36)",
|
840 |
+
"ticks": "outside"
|
841 |
+
},
|
842 |
+
"type": "choropleth"
|
843 |
+
}
|
844 |
+
],
|
845 |
+
"contour": [
|
846 |
+
{
|
847 |
+
"colorbar": {
|
848 |
+
"outlinewidth": 1,
|
849 |
+
"tickcolor": "rgb(36,36,36)",
|
850 |
+
"ticks": "outside"
|
851 |
+
},
|
852 |
+
"colorscale": [
|
853 |
+
[
|
854 |
+
0,
|
855 |
+
"#440154"
|
856 |
+
],
|
857 |
+
[
|
858 |
+
0.1111111111111111,
|
859 |
+
"#482878"
|
860 |
+
],
|
861 |
+
[
|
862 |
+
0.2222222222222222,
|
863 |
+
"#3e4989"
|
864 |
+
],
|
865 |
+
[
|
866 |
+
0.3333333333333333,
|
867 |
+
"#31688e"
|
868 |
+
],
|
869 |
+
[
|
870 |
+
0.4444444444444444,
|
871 |
+
"#26828e"
|
872 |
+
],
|
873 |
+
[
|
874 |
+
0.5555555555555556,
|
875 |
+
"#1f9e89"
|
876 |
+
],
|
877 |
+
[
|
878 |
+
0.6666666666666666,
|
879 |
+
"#35b779"
|
880 |
+
],
|
881 |
+
[
|
882 |
+
0.7777777777777778,
|
883 |
+
"#6ece58"
|
884 |
+
],
|
885 |
+
[
|
886 |
+
0.8888888888888888,
|
887 |
+
"#b5de2b"
|
888 |
+
],
|
889 |
+
[
|
890 |
+
1,
|
891 |
+
"#fde725"
|
892 |
+
]
|
893 |
+
],
|
894 |
+
"type": "contour"
|
895 |
+
}
|
896 |
+
],
|
897 |
+
"contourcarpet": [
|
898 |
+
{
|
899 |
+
"colorbar": {
|
900 |
+
"outlinewidth": 1,
|
901 |
+
"tickcolor": "rgb(36,36,36)",
|
902 |
+
"ticks": "outside"
|
903 |
+
},
|
904 |
+
"type": "contourcarpet"
|
905 |
+
}
|
906 |
+
],
|
907 |
+
"heatmap": [
|
908 |
+
{
|
909 |
+
"colorbar": {
|
910 |
+
"outlinewidth": 1,
|
911 |
+
"tickcolor": "rgb(36,36,36)",
|
912 |
+
"ticks": "outside"
|
913 |
+
},
|
914 |
+
"colorscale": [
|
915 |
+
[
|
916 |
+
0,
|
917 |
+
"#440154"
|
918 |
+
],
|
919 |
+
[
|
920 |
+
0.1111111111111111,
|
921 |
+
"#482878"
|
922 |
+
],
|
923 |
+
[
|
924 |
+
0.2222222222222222,
|
925 |
+
"#3e4989"
|
926 |
+
],
|
927 |
+
[
|
928 |
+
0.3333333333333333,
|
929 |
+
"#31688e"
|
930 |
+
],
|
931 |
+
[
|
932 |
+
0.4444444444444444,
|
933 |
+
"#26828e"
|
934 |
+
],
|
935 |
+
[
|
936 |
+
0.5555555555555556,
|
937 |
+
"#1f9e89"
|
938 |
+
],
|
939 |
+
[
|
940 |
+
0.6666666666666666,
|
941 |
+
"#35b779"
|
942 |
+
],
|
943 |
+
[
|
944 |
+
0.7777777777777778,
|
945 |
+
"#6ece58"
|
946 |
+
],
|
947 |
+
[
|
948 |
+
0.8888888888888888,
|
949 |
+
"#b5de2b"
|
950 |
+
],
|
951 |
+
[
|
952 |
+
1,
|
953 |
+
"#fde725"
|
954 |
+
]
|
955 |
+
],
|
956 |
+
"type": "heatmap"
|
957 |
+
}
|
958 |
+
],
|
959 |
+
"heatmapgl": [
|
960 |
+
{
|
961 |
+
"colorbar": {
|
962 |
+
"outlinewidth": 1,
|
963 |
+
"tickcolor": "rgb(36,36,36)",
|
964 |
+
"ticks": "outside"
|
965 |
+
},
|
966 |
+
"colorscale": [
|
967 |
+
[
|
968 |
+
0,
|
969 |
+
"#440154"
|
970 |
+
],
|
971 |
+
[
|
972 |
+
0.1111111111111111,
|
973 |
+
"#482878"
|
974 |
+
],
|
975 |
+
[
|
976 |
+
0.2222222222222222,
|
977 |
+
"#3e4989"
|
978 |
+
],
|
979 |
+
[
|
980 |
+
0.3333333333333333,
|
981 |
+
"#31688e"
|
982 |
+
],
|
983 |
+
[
|
984 |
+
0.4444444444444444,
|
985 |
+
"#26828e"
|
986 |
+
],
|
987 |
+
[
|
988 |
+
0.5555555555555556,
|
989 |
+
"#1f9e89"
|
990 |
+
],
|
991 |
+
[
|
992 |
+
0.6666666666666666,
|
993 |
+
"#35b779"
|
994 |
+
],
|
995 |
+
[
|
996 |
+
0.7777777777777778,
|
997 |
+
"#6ece58"
|
998 |
+
],
|
999 |
+
[
|
1000 |
+
0.8888888888888888,
|
1001 |
+
"#b5de2b"
|
1002 |
+
],
|
1003 |
+
[
|
1004 |
+
1,
|
1005 |
+
"#fde725"
|
1006 |
+
]
|
1007 |
+
],
|
1008 |
+
"type": "heatmapgl"
|
1009 |
+
}
|
1010 |
+
],
|
1011 |
+
"histogram": [
|
1012 |
+
{
|
1013 |
+
"marker": {
|
1014 |
+
"line": {
|
1015 |
+
"color": "white",
|
1016 |
+
"width": 0.6
|
1017 |
+
}
|
1018 |
+
},
|
1019 |
+
"type": "histogram"
|
1020 |
+
}
|
1021 |
+
],
|
1022 |
+
"histogram2d": [
|
1023 |
+
{
|
1024 |
+
"colorbar": {
|
1025 |
+
"outlinewidth": 1,
|
1026 |
+
"tickcolor": "rgb(36,36,36)",
|
1027 |
+
"ticks": "outside"
|
1028 |
+
},
|
1029 |
+
"colorscale": [
|
1030 |
+
[
|
1031 |
+
0,
|
1032 |
+
"#440154"
|
1033 |
+
],
|
1034 |
+
[
|
1035 |
+
0.1111111111111111,
|
1036 |
+
"#482878"
|
1037 |
+
],
|
1038 |
+
[
|
1039 |
+
0.2222222222222222,
|
1040 |
+
"#3e4989"
|
1041 |
+
],
|
1042 |
+
[
|
1043 |
+
0.3333333333333333,
|
1044 |
+
"#31688e"
|
1045 |
+
],
|
1046 |
+
[
|
1047 |
+
0.4444444444444444,
|
1048 |
+
"#26828e"
|
1049 |
+
],
|
1050 |
+
[
|
1051 |
+
0.5555555555555556,
|
1052 |
+
"#1f9e89"
|
1053 |
+
],
|
1054 |
+
[
|
1055 |
+
0.6666666666666666,
|
1056 |
+
"#35b779"
|
1057 |
+
],
|
1058 |
+
[
|
1059 |
+
0.7777777777777778,
|
1060 |
+
"#6ece58"
|
1061 |
+
],
|
1062 |
+
[
|
1063 |
+
0.8888888888888888,
|
1064 |
+
"#b5de2b"
|
1065 |
+
],
|
1066 |
+
[
|
1067 |
+
1,
|
1068 |
+
"#fde725"
|
1069 |
+
]
|
1070 |
+
],
|
1071 |
+
"type": "histogram2d"
|
1072 |
+
}
|
1073 |
+
],
|
1074 |
+
"histogram2dcontour": [
|
1075 |
+
{
|
1076 |
+
"colorbar": {
|
1077 |
+
"outlinewidth": 1,
|
1078 |
+
"tickcolor": "rgb(36,36,36)",
|
1079 |
+
"ticks": "outside"
|
1080 |
+
},
|
1081 |
+
"colorscale": [
|
1082 |
+
[
|
1083 |
+
0,
|
1084 |
+
"#440154"
|
1085 |
+
],
|
1086 |
+
[
|
1087 |
+
0.1111111111111111,
|
1088 |
+
"#482878"
|
1089 |
+
],
|
1090 |
+
[
|
1091 |
+
0.2222222222222222,
|
1092 |
+
"#3e4989"
|
1093 |
+
],
|
1094 |
+
[
|
1095 |
+
0.3333333333333333,
|
1096 |
+
"#31688e"
|
1097 |
+
],
|
1098 |
+
[
|
1099 |
+
0.4444444444444444,
|
1100 |
+
"#26828e"
|
1101 |
+
],
|
1102 |
+
[
|
1103 |
+
0.5555555555555556,
|
1104 |
+
"#1f9e89"
|
1105 |
+
],
|
1106 |
+
[
|
1107 |
+
0.6666666666666666,
|
1108 |
+
"#35b779"
|
1109 |
+
],
|
1110 |
+
[
|
1111 |
+
0.7777777777777778,
|
1112 |
+
"#6ece58"
|
1113 |
+
],
|
1114 |
+
[
|
1115 |
+
0.8888888888888888,
|
1116 |
+
"#b5de2b"
|
1117 |
+
],
|
1118 |
+
[
|
1119 |
+
1,
|
1120 |
+
"#fde725"
|
1121 |
+
]
|
1122 |
+
],
|
1123 |
+
"type": "histogram2dcontour"
|
1124 |
+
}
|
1125 |
+
],
|
1126 |
+
"mesh3d": [
|
1127 |
+
{
|
1128 |
+
"colorbar": {
|
1129 |
+
"outlinewidth": 1,
|
1130 |
+
"tickcolor": "rgb(36,36,36)",
|
1131 |
+
"ticks": "outside"
|
1132 |
+
},
|
1133 |
+
"type": "mesh3d"
|
1134 |
+
}
|
1135 |
+
],
|
1136 |
+
"parcoords": [
|
1137 |
+
{
|
1138 |
+
"line": {
|
1139 |
+
"colorbar": {
|
1140 |
+
"outlinewidth": 1,
|
1141 |
+
"tickcolor": "rgb(36,36,36)",
|
1142 |
+
"ticks": "outside"
|
1143 |
+
}
|
1144 |
+
},
|
1145 |
+
"type": "parcoords"
|
1146 |
+
}
|
1147 |
+
],
|
1148 |
+
"pie": [
|
1149 |
+
{
|
1150 |
+
"automargin": true,
|
1151 |
+
"type": "pie"
|
1152 |
+
}
|
1153 |
+
],
|
1154 |
+
"scatter": [
|
1155 |
+
{
|
1156 |
+
"fillpattern": {
|
1157 |
+
"fillmode": "overlay",
|
1158 |
+
"size": 10,
|
1159 |
+
"solidity": 0.2
|
1160 |
+
},
|
1161 |
+
"type": "scatter"
|
1162 |
+
}
|
1163 |
+
],
|
1164 |
+
"scatter3d": [
|
1165 |
+
{
|
1166 |
+
"line": {
|
1167 |
+
"colorbar": {
|
1168 |
+
"outlinewidth": 1,
|
1169 |
+
"tickcolor": "rgb(36,36,36)",
|
1170 |
+
"ticks": "outside"
|
1171 |
+
}
|
1172 |
+
},
|
1173 |
+
"marker": {
|
1174 |
+
"colorbar": {
|
1175 |
+
"outlinewidth": 1,
|
1176 |
+
"tickcolor": "rgb(36,36,36)",
|
1177 |
+
"ticks": "outside"
|
1178 |
+
}
|
1179 |
+
},
|
1180 |
+
"type": "scatter3d"
|
1181 |
+
}
|
1182 |
+
],
|
1183 |
+
"scattercarpet": [
|
1184 |
+
{
|
1185 |
+
"marker": {
|
1186 |
+
"colorbar": {
|
1187 |
+
"outlinewidth": 1,
|
1188 |
+
"tickcolor": "rgb(36,36,36)",
|
1189 |
+
"ticks": "outside"
|
1190 |
+
}
|
1191 |
+
},
|
1192 |
+
"type": "scattercarpet"
|
1193 |
+
}
|
1194 |
+
],
|
1195 |
+
"scattergeo": [
|
1196 |
+
{
|
1197 |
+
"marker": {
|
1198 |
+
"colorbar": {
|
1199 |
+
"outlinewidth": 1,
|
1200 |
+
"tickcolor": "rgb(36,36,36)",
|
1201 |
+
"ticks": "outside"
|
1202 |
+
}
|
1203 |
+
},
|
1204 |
+
"type": "scattergeo"
|
1205 |
+
}
|
1206 |
+
],
|
1207 |
+
"scattergl": [
|
1208 |
+
{
|
1209 |
+
"marker": {
|
1210 |
+
"colorbar": {
|
1211 |
+
"outlinewidth": 1,
|
1212 |
+
"tickcolor": "rgb(36,36,36)",
|
1213 |
+
"ticks": "outside"
|
1214 |
+
}
|
1215 |
+
},
|
1216 |
+
"type": "scattergl"
|
1217 |
+
}
|
1218 |
+
],
|
1219 |
+
"scattermapbox": [
|
1220 |
+
{
|
1221 |
+
"marker": {
|
1222 |
+
"colorbar": {
|
1223 |
+
"outlinewidth": 1,
|
1224 |
+
"tickcolor": "rgb(36,36,36)",
|
1225 |
+
"ticks": "outside"
|
1226 |
+
}
|
1227 |
+
},
|
1228 |
+
"type": "scattermapbox"
|
1229 |
+
}
|
1230 |
+
],
|
1231 |
+
"scatterpolar": [
|
1232 |
+
{
|
1233 |
+
"marker": {
|
1234 |
+
"colorbar": {
|
1235 |
+
"outlinewidth": 1,
|
1236 |
+
"tickcolor": "rgb(36,36,36)",
|
1237 |
+
"ticks": "outside"
|
1238 |
+
}
|
1239 |
+
},
|
1240 |
+
"type": "scatterpolar"
|
1241 |
+
}
|
1242 |
+
],
|
1243 |
+
"scatterpolargl": [
|
1244 |
+
{
|
1245 |
+
"marker": {
|
1246 |
+
"colorbar": {
|
1247 |
+
"outlinewidth": 1,
|
1248 |
+
"tickcolor": "rgb(36,36,36)",
|
1249 |
+
"ticks": "outside"
|
1250 |
+
}
|
1251 |
+
},
|
1252 |
+
"type": "scatterpolargl"
|
1253 |
+
}
|
1254 |
+
],
|
1255 |
+
"scatterternary": [
|
1256 |
+
{
|
1257 |
+
"marker": {
|
1258 |
+
"colorbar": {
|
1259 |
+
"outlinewidth": 1,
|
1260 |
+
"tickcolor": "rgb(36,36,36)",
|
1261 |
+
"ticks": "outside"
|
1262 |
+
}
|
1263 |
+
},
|
1264 |
+
"type": "scatterternary"
|
1265 |
+
}
|
1266 |
+
],
|
1267 |
+
"surface": [
|
1268 |
+
{
|
1269 |
+
"colorbar": {
|
1270 |
+
"outlinewidth": 1,
|
1271 |
+
"tickcolor": "rgb(36,36,36)",
|
1272 |
+
"ticks": "outside"
|
1273 |
+
},
|
1274 |
+
"colorscale": [
|
1275 |
+
[
|
1276 |
+
0,
|
1277 |
+
"#440154"
|
1278 |
+
],
|
1279 |
+
[
|
1280 |
+
0.1111111111111111,
|
1281 |
+
"#482878"
|
1282 |
+
],
|
1283 |
+
[
|
1284 |
+
0.2222222222222222,
|
1285 |
+
"#3e4989"
|
1286 |
+
],
|
1287 |
+
[
|
1288 |
+
0.3333333333333333,
|
1289 |
+
"#31688e"
|
1290 |
+
],
|
1291 |
+
[
|
1292 |
+
0.4444444444444444,
|
1293 |
+
"#26828e"
|
1294 |
+
],
|
1295 |
+
[
|
1296 |
+
0.5555555555555556,
|
1297 |
+
"#1f9e89"
|
1298 |
+
],
|
1299 |
+
[
|
1300 |
+
0.6666666666666666,
|
1301 |
+
"#35b779"
|
1302 |
+
],
|
1303 |
+
[
|
1304 |
+
0.7777777777777778,
|
1305 |
+
"#6ece58"
|
1306 |
+
],
|
1307 |
+
[
|
1308 |
+
0.8888888888888888,
|
1309 |
+
"#b5de2b"
|
1310 |
+
],
|
1311 |
+
[
|
1312 |
+
1,
|
1313 |
+
"#fde725"
|
1314 |
+
]
|
1315 |
+
],
|
1316 |
+
"type": "surface"
|
1317 |
+
}
|
1318 |
+
],
|
1319 |
+
"table": [
|
1320 |
+
{
|
1321 |
+
"cells": {
|
1322 |
+
"fill": {
|
1323 |
+
"color": "rgb(237,237,237)"
|
1324 |
+
},
|
1325 |
+
"line": {
|
1326 |
+
"color": "white"
|
1327 |
+
}
|
1328 |
+
},
|
1329 |
+
"header": {
|
1330 |
+
"fill": {
|
1331 |
+
"color": "rgb(217,217,217)"
|
1332 |
+
},
|
1333 |
+
"line": {
|
1334 |
+
"color": "white"
|
1335 |
+
}
|
1336 |
+
},
|
1337 |
+
"type": "table"
|
1338 |
+
}
|
1339 |
+
]
|
1340 |
+
},
|
1341 |
+
"layout": {
|
1342 |
+
"annotationdefaults": {
|
1343 |
+
"arrowhead": 0,
|
1344 |
+
"arrowwidth": 1
|
1345 |
+
},
|
1346 |
+
"autotypenumbers": "strict",
|
1347 |
+
"coloraxis": {
|
1348 |
+
"colorbar": {
|
1349 |
+
"outlinewidth": 1,
|
1350 |
+
"tickcolor": "rgb(36,36,36)",
|
1351 |
+
"ticks": "outside"
|
1352 |
+
}
|
1353 |
+
},
|
1354 |
+
"colorscale": {
|
1355 |
+
"diverging": [
|
1356 |
+
[
|
1357 |
+
0,
|
1358 |
+
"rgb(103,0,31)"
|
1359 |
+
],
|
1360 |
+
[
|
1361 |
+
0.1,
|
1362 |
+
"rgb(178,24,43)"
|
1363 |
+
],
|
1364 |
+
[
|
1365 |
+
0.2,
|
1366 |
+
"rgb(214,96,77)"
|
1367 |
+
],
|
1368 |
+
[
|
1369 |
+
0.3,
|
1370 |
+
"rgb(244,165,130)"
|
1371 |
+
],
|
1372 |
+
[
|
1373 |
+
0.4,
|
1374 |
+
"rgb(253,219,199)"
|
1375 |
+
],
|
1376 |
+
[
|
1377 |
+
0.5,
|
1378 |
+
"rgb(247,247,247)"
|
1379 |
+
],
|
1380 |
+
[
|
1381 |
+
0.6,
|
1382 |
+
"rgb(209,229,240)"
|
1383 |
+
],
|
1384 |
+
[
|
1385 |
+
0.7,
|
1386 |
+
"rgb(146,197,222)"
|
1387 |
+
],
|
1388 |
+
[
|
1389 |
+
0.8,
|
1390 |
+
"rgb(67,147,195)"
|
1391 |
+
],
|
1392 |
+
[
|
1393 |
+
0.9,
|
1394 |
+
"rgb(33,102,172)"
|
1395 |
+
],
|
1396 |
+
[
|
1397 |
+
1,
|
1398 |
+
"rgb(5,48,97)"
|
1399 |
+
]
|
1400 |
+
],
|
1401 |
+
"sequential": [
|
1402 |
+
[
|
1403 |
+
0,
|
1404 |
+
"#440154"
|
1405 |
+
],
|
1406 |
+
[
|
1407 |
+
0.1111111111111111,
|
1408 |
+
"#482878"
|
1409 |
+
],
|
1410 |
+
[
|
1411 |
+
0.2222222222222222,
|
1412 |
+
"#3e4989"
|
1413 |
+
],
|
1414 |
+
[
|
1415 |
+
0.3333333333333333,
|
1416 |
+
"#31688e"
|
1417 |
+
],
|
1418 |
+
[
|
1419 |
+
0.4444444444444444,
|
1420 |
+
"#26828e"
|
1421 |
+
],
|
1422 |
+
[
|
1423 |
+
0.5555555555555556,
|
1424 |
+
"#1f9e89"
|
1425 |
+
],
|
1426 |
+
[
|
1427 |
+
0.6666666666666666,
|
1428 |
+
"#35b779"
|
1429 |
+
],
|
1430 |
+
[
|
1431 |
+
0.7777777777777778,
|
1432 |
+
"#6ece58"
|
1433 |
+
],
|
1434 |
+
[
|
1435 |
+
0.8888888888888888,
|
1436 |
+
"#b5de2b"
|
1437 |
+
],
|
1438 |
+
[
|
1439 |
+
1,
|
1440 |
+
"#fde725"
|
1441 |
+
]
|
1442 |
+
],
|
1443 |
+
"sequentialminus": [
|
1444 |
+
[
|
1445 |
+
0,
|
1446 |
+
"#440154"
|
1447 |
+
],
|
1448 |
+
[
|
1449 |
+
0.1111111111111111,
|
1450 |
+
"#482878"
|
1451 |
+
],
|
1452 |
+
[
|
1453 |
+
0.2222222222222222,
|
1454 |
+
"#3e4989"
|
1455 |
+
],
|
1456 |
+
[
|
1457 |
+
0.3333333333333333,
|
1458 |
+
"#31688e"
|
1459 |
+
],
|
1460 |
+
[
|
1461 |
+
0.4444444444444444,
|
1462 |
+
"#26828e"
|
1463 |
+
],
|
1464 |
+
[
|
1465 |
+
0.5555555555555556,
|
1466 |
+
"#1f9e89"
|
1467 |
+
],
|
1468 |
+
[
|
1469 |
+
0.6666666666666666,
|
1470 |
+
"#35b779"
|
1471 |
+
],
|
1472 |
+
[
|
1473 |
+
0.7777777777777778,
|
1474 |
+
"#6ece58"
|
1475 |
+
],
|
1476 |
+
[
|
1477 |
+
0.8888888888888888,
|
1478 |
+
"#b5de2b"
|
1479 |
+
],
|
1480 |
+
[
|
1481 |
+
1,
|
1482 |
+
"#fde725"
|
1483 |
+
]
|
1484 |
+
]
|
1485 |
+
},
|
1486 |
+
"colorway": [
|
1487 |
+
"#1F77B4",
|
1488 |
+
"#FF7F0E",
|
1489 |
+
"#2CA02C",
|
1490 |
+
"#D62728",
|
1491 |
+
"#9467BD",
|
1492 |
+
"#8C564B",
|
1493 |
+
"#E377C2",
|
1494 |
+
"#7F7F7F",
|
1495 |
+
"#BCBD22",
|
1496 |
+
"#17BECF"
|
1497 |
+
],
|
1498 |
+
"font": {
|
1499 |
+
"color": "rgb(36,36,36)"
|
1500 |
+
},
|
1501 |
+
"geo": {
|
1502 |
+
"bgcolor": "white",
|
1503 |
+
"lakecolor": "white",
|
1504 |
+
"landcolor": "white",
|
1505 |
+
"showlakes": true,
|
1506 |
+
"showland": true,
|
1507 |
+
"subunitcolor": "white"
|
1508 |
+
},
|
1509 |
+
"hoverlabel": {
|
1510 |
+
"align": "left"
|
1511 |
+
},
|
1512 |
+
"hovermode": "closest",
|
1513 |
+
"mapbox": {
|
1514 |
+
"style": "light"
|
1515 |
+
},
|
1516 |
+
"paper_bgcolor": "white",
|
1517 |
+
"plot_bgcolor": "white",
|
1518 |
+
"polar": {
|
1519 |
+
"angularaxis": {
|
1520 |
+
"gridcolor": "rgb(232,232,232)",
|
1521 |
+
"linecolor": "rgb(36,36,36)",
|
1522 |
+
"showgrid": false,
|
1523 |
+
"showline": true,
|
1524 |
+
"ticks": "outside"
|
1525 |
+
},
|
1526 |
+
"bgcolor": "white",
|
1527 |
+
"radialaxis": {
|
1528 |
+
"gridcolor": "rgb(232,232,232)",
|
1529 |
+
"linecolor": "rgb(36,36,36)",
|
1530 |
+
"showgrid": false,
|
1531 |
+
"showline": true,
|
1532 |
+
"ticks": "outside"
|
1533 |
+
}
|
1534 |
+
},
|
1535 |
+
"scene": {
|
1536 |
+
"xaxis": {
|
1537 |
+
"backgroundcolor": "white",
|
1538 |
+
"gridcolor": "rgb(232,232,232)",
|
1539 |
+
"gridwidth": 2,
|
1540 |
+
"linecolor": "rgb(36,36,36)",
|
1541 |
+
"showbackground": true,
|
1542 |
+
"showgrid": false,
|
1543 |
+
"showline": true,
|
1544 |
+
"ticks": "outside",
|
1545 |
+
"zeroline": false,
|
1546 |
+
"zerolinecolor": "rgb(36,36,36)"
|
1547 |
+
},
|
1548 |
+
"yaxis": {
|
1549 |
+
"backgroundcolor": "white",
|
1550 |
+
"gridcolor": "rgb(232,232,232)",
|
1551 |
+
"gridwidth": 2,
|
1552 |
+
"linecolor": "rgb(36,36,36)",
|
1553 |
+
"showbackground": true,
|
1554 |
+
"showgrid": false,
|
1555 |
+
"showline": true,
|
1556 |
+
"ticks": "outside",
|
1557 |
+
"zeroline": false,
|
1558 |
+
"zerolinecolor": "rgb(36,36,36)"
|
1559 |
+
},
|
1560 |
+
"zaxis": {
|
1561 |
+
"backgroundcolor": "white",
|
1562 |
+
"gridcolor": "rgb(232,232,232)",
|
1563 |
+
"gridwidth": 2,
|
1564 |
+
"linecolor": "rgb(36,36,36)",
|
1565 |
+
"showbackground": true,
|
1566 |
+
"showgrid": false,
|
1567 |
+
"showline": true,
|
1568 |
+
"ticks": "outside",
|
1569 |
+
"zeroline": false,
|
1570 |
+
"zerolinecolor": "rgb(36,36,36)"
|
1571 |
+
}
|
1572 |
+
},
|
1573 |
+
"shapedefaults": {
|
1574 |
+
"fillcolor": "black",
|
1575 |
+
"line": {
|
1576 |
+
"width": 0
|
1577 |
+
},
|
1578 |
+
"opacity": 0.3
|
1579 |
+
},
|
1580 |
+
"ternary": {
|
1581 |
+
"aaxis": {
|
1582 |
+
"gridcolor": "rgb(232,232,232)",
|
1583 |
+
"linecolor": "rgb(36,36,36)",
|
1584 |
+
"showgrid": false,
|
1585 |
+
"showline": true,
|
1586 |
+
"ticks": "outside"
|
1587 |
+
},
|
1588 |
+
"baxis": {
|
1589 |
+
"gridcolor": "rgb(232,232,232)",
|
1590 |
+
"linecolor": "rgb(36,36,36)",
|
1591 |
+
"showgrid": false,
|
1592 |
+
"showline": true,
|
1593 |
+
"ticks": "outside"
|
1594 |
+
},
|
1595 |
+
"bgcolor": "white",
|
1596 |
+
"caxis": {
|
1597 |
+
"gridcolor": "rgb(232,232,232)",
|
1598 |
+
"linecolor": "rgb(36,36,36)",
|
1599 |
+
"showgrid": false,
|
1600 |
+
"showline": true,
|
1601 |
+
"ticks": "outside"
|
1602 |
+
}
|
1603 |
+
},
|
1604 |
+
"title": {
|
1605 |
+
"x": 0.05
|
1606 |
+
},
|
1607 |
+
"xaxis": {
|
1608 |
+
"automargin": true,
|
1609 |
+
"gridcolor": "rgb(232,232,232)",
|
1610 |
+
"linecolor": "rgb(36,36,36)",
|
1611 |
+
"showgrid": false,
|
1612 |
+
"showline": true,
|
1613 |
+
"ticks": "outside",
|
1614 |
+
"title": {
|
1615 |
+
"standoff": 15
|
1616 |
+
},
|
1617 |
+
"zeroline": false,
|
1618 |
+
"zerolinecolor": "rgb(36,36,36)"
|
1619 |
+
},
|
1620 |
+
"yaxis": {
|
1621 |
+
"automargin": true,
|
1622 |
+
"gridcolor": "rgb(232,232,232)",
|
1623 |
+
"linecolor": "rgb(36,36,36)",
|
1624 |
+
"showgrid": false,
|
1625 |
+
"showline": true,
|
1626 |
+
"ticks": "outside",
|
1627 |
+
"title": {
|
1628 |
+
"standoff": 15
|
1629 |
+
},
|
1630 |
+
"zeroline": false,
|
1631 |
+
"zerolinecolor": "rgb(36,36,36)"
|
1632 |
+
}
|
1633 |
+
}
|
1634 |
+
},
|
1635 |
+
"title": {
|
1636 |
+
"text": "Holt Winters Forecast",
|
1637 |
+
"x": 0.5
|
1638 |
+
},
|
1639 |
+
"width": 700,
|
1640 |
+
"xaxis": {
|
1641 |
+
"title": {
|
1642 |
+
"text": "Date"
|
1643 |
+
}
|
1644 |
+
},
|
1645 |
+
"yaxis": {
|
1646 |
+
"title": {
|
1647 |
+
"text": "Passenger Volume"
|
1648 |
+
}
|
1649 |
+
}
|
1650 |
+
}
|
1651 |
+
}
|
1652 |
+
},
|
1653 |
+
"metadata": {},
|
1654 |
+
"output_type": "display_data"
|
1655 |
+
}
|
1656 |
+
],
|
1657 |
+
"source": [
|
1658 |
+
"# Plot the forecasts\n",
|
1659 |
+
"plot_func(forecasts, \"Holt Winters Forecast\")"
|
1660 |
+
]
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"cell_type": "code",
|
1664 |
+
"execution_count": 3,
|
1665 |
+
"metadata": {},
|
1666 |
+
"outputs": [
|
1667 |
+
{
|
1668 |
+
"name": "stdout",
|
1669 |
+
"output_type": "stream",
|
1670 |
+
"text": [
|
1671 |
+
" Month #Passengers fittedvalues residuals\n",
|
1672 |
+
"0 1949-01-01 112 111.997011 0.002989\n",
|
1673 |
+
"1 1949-02-01 118 119.397772 -1.397772\n",
|
1674 |
+
"2 1949-03-01 132 132.485694 -0.485694\n",
|
1675 |
+
"3 1949-04-01 129 126.790028 2.209972\n",
|
1676 |
+
"4 1949-05-01 121 118.553190 2.446810\n",
|
1677 |
+
".. ... ... ... ...\n",
|
1678 |
+
"111 1958-04-01 348 370.894734 -22.894734\n",
|
1679 |
+
"112 1958-05-01 363 370.984509 -7.984509\n",
|
1680 |
+
"113 1958-06-01 435 435.713085 -0.713085\n",
|
1681 |
+
"114 1958-07-01 491 479.724073 11.275927\n",
|
1682 |
+
"115 1958-08-01 505 479.483081 25.516919\n",
|
1683 |
+
"\n",
|
1684 |
+
"[116 rows x 4 columns]\n"
|
1685 |
+
]
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"name": "stderr",
|
1689 |
+
"output_type": "stream",
|
1690 |
+
"text": [
|
1691 |
+
"/tmp/ipykernel_68203/2996281503.py:2: SettingWithCopyWarning:\n",
|
1692 |
+
"\n",
|
1693 |
+
"\n",
|
1694 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
1695 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
1696 |
+
"\n",
|
1697 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
1698 |
+
"\n",
|
1699 |
+
"/tmp/ipykernel_68203/2996281503.py:3: SettingWithCopyWarning:\n",
|
1700 |
+
"\n",
|
1701 |
+
"\n",
|
1702 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
1703 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
1704 |
+
"\n",
|
1705 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
1706 |
+
"\n"
|
1707 |
+
]
|
1708 |
+
}
|
1709 |
+
],
|
1710 |
+
"source": [
|
1711 |
+
"# Appending residuals and fitted values to the train dataframe\n",
|
1712 |
+
"train[\"fittedvalues\"] = model.fittedvalues\n",
|
1713 |
+
"train[\"residuals\"] = model.resid\n",
|
1714 |
+
"print(train)"
|
1715 |
+
]
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"cell_type": "code",
|
1719 |
+
"execution_count": 4,
|
1720 |
+
"metadata": {},
|
1721 |
+
"outputs": [
|
1722 |
+
{
|
1723 |
+
"data": {
|
1724 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAEiCAYAAAC7hD4qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFpUlEQVR4nO3dd3wUZf4H8M8mJJsCCYF0CCkoRLoGwdASJBCQYpBqORJEEASVogie0vQuZ8OCIHJ3EO5nlA4iItJRIUePCEIOQugptBRSIfv8/gi7ZJPNZDfZ3ZlNPu/XK6/szszOPDOzO9/n+8zMMyohhAAREREREVEV7OQuABERERERKRuTBiIiIiIiksSkgYiIiIiIJDFpICIiIiIiSUwaiIiIiIhIEpMGIiIiIiKSxKSBiIiIiIgkMWkgIiIiIiJJTBqIiIiIiEgSkwYihdu7dy9UKhX27t1r1vmqVCrMmzfPrPMkIqqtefPmQaVS1eizkZGRiIyMNG+ByCBLbOva7HuyPCYNZFVLliyBSqVC165dazWfrVu3ssJrBG4nIjJFQkICVCqV7s/JyQmtWrXClClTkJmZabblFBQUYN68eWZvDDFVaWkp/P39oVKp8NNPP9VqXkpZJ6XjdrJdTBrIqhITExEUFIRDhw7h3LlzNZ7P1q1bMX/+fDOWrG6S2k6FhYV45513rFwiIrIFCxYswP/93//hyy+/RLdu3fDVV18hPDwcBQUFZpl/QUEB5s+fb7Di+M4776CwsNAsy6nO7t27kZ6ejqCgICQmJtZqXlLrRA8oZd+T6Zg0kNWkpaXhwIEDWLhwIby8vGp9gFa6qoLrvXv3UFJSYuXSVObk5IQGDRrIXQwiUqABAwbghRdewEsvvYSEhARMnToVaWlp+P7772s1X41Gg6KiIslpGjRoACcnp1otx1jffPMNHnvsMUybNg2bNm1Cfn6+VZYrl6KiImg0GoPjlLDu1tz3ZDomDWQ1iYmJ8PDwwMCBAzF8+PBKSUNV1+5fuHABKpUKCQkJAIC4uDgsXrwYAPROo2vl5+djxowZCAgIgFqtRuvWrfHxxx9DCFGpTN988w26dOkCFxcXeHh4oFevXti+fbveNEuWLEHbtm2hVqvh7++PyZMnIzs7W2+ayMhItGvXDkePHkWvXr3g4uKCt99+W1f2jz/+GJ999hlatmwJtVqNP//8EwBw5swZDB8+HE2aNIGTkxM6d+6MzZs3V7stf/31V4wYMQItWrSAWq1GQEAApk2bptdCU912MnRPw/HjxzFgwAC4ubmhYcOG6NOnD/773//qTaO9fGH//v2YPn06vLy84OrqiqFDh+L69evVlp2IbM+TTz4JoKzxBwA+/vhjdOvWDU2bNoWzszPCwsKwbt26Sp9TqVSYMmUKEhMTdcfRpUuXwsvLCwAwf/583bFJezwydF37ihUr8OSTT8Lb2xtqtRpt2rTBV199Vat1KiwsxMaNGzF69GiMHDkShYWFBpOiqq7dj4uLQ1BQEICyOCW1TkDZWY2ePXvC1dUVjRs3xtNPP43Tp09Xmu/Vq1cxbtw4+Pv7Q61WIzg4GJMmTdJrbDp//jxGjBiBJk2awMXFBU888QR+/PFHvfloY+qqVavwzjvvoFmzZnBxcUFubi7i4uLQsGFDpKam4qmnnkKjRo3w/PPPAyhL7D777DO0bdsWTk5O8PHxwcsvv4zbt29Lbs+SkhLMmTMHYWFhcHd3h6urK3r27Ik9e/bopqluOxna9/fu3cN7772ni59BQUF4++23UVxcrDddUFAQBg0ahN9++w1dunSBk5MTQkJC8J///Eey3GQ8NjOS1SQmJuKZZ56Bo6Mjnn32WXz11Vc4fPgwHn/8cZPm8/LLL+PatWvYsWMH/u///k9vnBACQ4YMwZ49ezBu3Dh06tQJP//8M958801cvXoVn376qW7a+fPnY968eejWrRsWLFgAR0dHHDx4ELt370a/fv0AlB3A5s+fj6ioKEyaNAkpKSm6cu/fvx8ODg66+d28eRMDBgzA6NGj8cILL8DHx0c3bsWKFSgqKsKECROgVqvRpEkTnDp1Ct27d0ezZs0wa9YsuLq6Ys2aNYiJicH69esxdOjQKrfB2rVrUVBQgEmTJqFp06Y4dOgQFi1ahCtXrmDt2rXVbidDTp06hZ49e8LNzQ0zZ86Eg4MDvv76a0RGRmLfvn2V7kN59dVX4eHhgblz5+LChQv47LPPMGXKFKxevbraZRGRbUlNTQUANG3aFADw+eefY8iQIXj++edRUlKCVatWYcSIEdiyZQsGDhyo99ndu3djzZo1mDJlCjw9PdGxY0d89dVXmDRpEoYOHYpnnnkGANChQ4cql//VV1+hbdu2GDJkCBo0aIAffvgBr7zyCjQaDSZPnlyjddq8eTPu3LmD0aNHw9fXF5GRkUhMTMRzzz1n8ry8vLwk12nnzp0YMGAAQkJCMG/ePBQWFmLRokXo3r07jh07pks+rl27hi5duiA7OxsTJkxAaGgorl69inXr1qGgoACOjo7IzMxEt27dUFBQgNdeew1NmzbFypUrMWTIEKxbt65S7Hjvvffg6OiIN954A8XFxXB0dARQVhmPjo5Gjx498PHHH8PFxQVAWexISEjA2LFj8dprryEtLQ1ffvkljh8/XinulZebm4t//etfePbZZzF+/Hjk5eXh3//+N6Kjo3Ho0CF06tSp2u1kyEsvvYSVK1di+PDhmDFjBg4ePIj4+HicPn0aGzdu1Jv23LlzGD58OMaNG4fY2FgsX74ccXFxCAsLQ9u2bU3cq1SJILKCI0eOCABix44dQgghNBqNaN68uXj99dd10+zZs0cAEHv27NH7bFpamgAgVqxYoRs2efJkYejru2nTJgFAvP/++3rDhw8fLlQqlTh37pwQQoizZ88KOzs7MXToUFFaWqo3rUajEUIIkZWVJRwdHUW/fv30pvnyyy8FALF8+XLdsIiICAFALF261GDZ3dzcRFZWlt64Pn36iPbt24uioiK9ZXfr1k08/PDDktuloKCg0rrHx8cLlUolLl68WO12EkIIAGLu3Lm69zExMcLR0VGkpqbqhl27dk00atRI9OrVSzdsxYoVAoCIiorSbSshhJg2bZqwt7cX2dnZBpdHRMqn/X3v3LlTXL9+XVy+fFmsWrVKNG3aVDg7O4srV64IISofg0pKSkS7du3Ek08+qTccgLCzsxOnTp3SG379+vVKxyCtuXPnVjpuGTrmRUdHi5CQEL1hERERIiIiwqh1HTRokOjevbvu/bJly0SDBg0qHaurmmdsbKwIDAzUvZdap06dOglvb29x8+ZN3bDff/9d2NnZiTFjxuiGjRkzRtjZ2YnDhw9Xmof2eDt16lQBQPz666+6cXl5eSI4OFgEBQXp4pU2doSEhFTafrGxsQKAmDVrlt7wX3/9VQAQiYmJesO3bdtWaXjF7XLv3j1RXFys97nbt28LHx8f8eKLLxq1nSru++TkZAFAvPTSS3rTvfHGGwKA2L17t25YYGCgACB++eUX3bCsrCyhVqvFjBkzKi2LTMfLk8gqEhMT4ePjg969ewMoO2U9atQorFq1CqWlpWZbztatW2Fvb4/XXntNb/iMGTMghND1jrFp0yZoNBrMmTMHdnb6PwPtqdGdO3eipKQEU6dO1Ztm/PjxcHNzq3QqWK1WY+zYsQbLNWzYMN0pWQC4desWdu/ejZEjRyIvLw83btzAjRs3cPPmTURHR+Ps2bO4evVqlevp7Oyse52fn48bN26gW7duEELg+PHjUpvIoNLSUmzfvh0xMTEICQnRDffz88Nzzz2H3377Dbm5uXqfmTBhgt5p5J49e6K0tBQXL140eflEpCxRUVHw8vJCQEAARo8ejYYNG2Ljxo1o1qwZAP1j0O3bt5GTk4OePXvi2LFjleYVERGBNm3a1Ko85ZeXk5ODGzduICIiAufPn0dOTo7J87t58yZ+/vlnPPvss7phw4YNg0qlwpo1a2pV1orS09ORnJyMuLg4NGnSRDe8Q4cO6Nu3L7Zu3Qqg7LKgTZs2YfDgwejcuXOl+WiPt1u3bkWXLl3Qo0cP3biGDRtiwoQJuHDhgu7yV63Y2Fi97VfepEmT9N6vXbsW7u7u6Nu3ry4u3bhxA2FhYWjYsKHepUYV2dvb685iaDQa3Lp1C/fu3UPnzp0Nfi+Mod0206dP1xs+Y8YMAKgUh9u0aYOePXvq3nt5eaF169Y4f/58jZZP+nh5EllcaWkpVq1ahd69e+uuhwWArl274pNPPsGuXbt0lwPV1sWLF+Hv749GjRrpDX/kkUd044GyU+12dnaSgUw7bevWrfWGOzo6IiQkpFLluFmzZroDZkXBwcF678+dOwchBN599128++67Bj+TlZWlC9AVXbp0CXPmzMHmzZsrXWdakwB6/fp1FBQUVFpXoGzbaTQaXL58We/0bosWLfSm8/DwAIBqr3slIuVbvHgxWrVqhQYNGsDHxwetW7fWazzZsmUL3n//fSQnJ+tdW26oj/2Kx7+a2L9/P+bOnYukpKRKnUzk5OTA3d3dpPmtXr0ad+/exaOPPqrXk1/Xrl2RmJhY40ueDKkqlgBlx9eff/4Z+fn5uHPnDnJzc9GuXbtq52eo2/Lyca78PKra/g0aNEDz5s31hp09exY5OTnw9vY2+JmsrCzJsq1cuRKffPIJzpw5g7t371ZbhupcvHgRdnZ2eOihh/SG+/r6onHjxpXicMW4BJTFJsYl82DSQBan7dJu1apVWLVqVaXxiYmJ6NevX5UPdDHnmQhLqqolx9A4be8Vb7zxBqKjow1+puJBUqu0tBR9+/bFrVu38NZbbyE0NBSurq64evUq4uLiquwZw9zs7e0NDhcGbjgnItvSpUsXg63dQFlHDEOGDEGvXr2wZMkS+Pn5wcHBAStWrMC3335baXqpY6MxUlNT0adPH4SGhmLhwoUICAiAo6Mjtm7dik8//bRGxzxtRxzdu3c3OP78+fO6s64qlcrgcc3WY5Nara50pl2j0cDb27vK3g3LnzGv6JtvvkFcXBxiYmLw5ptvwtvbG/b29oiPj9fdE1NTxj7wjXHJspg0kMUlJibC29tb15NPeRs2bMDGjRuxdOlSXUt1xZ6JDF3uUtUBJDAwEDt37kReXp7e2YYzZ87oxgNAy5YtodFo8Oeff6JTp05VzgsAUlJS9C7ZKSkpQVpaGqKioqpY4+pp5+fg4GDyfP744w/873//w8qVKzFmzBjd8B07dlSa1tgDrZeXF1xcXJCSklJp3JkzZ2BnZ4eAgACTyklEddP69evh5OSEn3/+GWq1Wjd8xYoVRs/DlKf+/vDDDyguLsbmzZv1WpKlLpWRou3+e8qUKYiIiNAbp9Fo8Je//AXffvut7jk2Hh4eBi9vqRibpOISgCqPr56ennB1dYWzszPc3Nxw8uRJyfIHBgZWOa/yy6uJli1bYufOnejevbvJyd66desQEhKCDRs26G2LuXPn6k1nyr4PDAyERqPB2bNndWdSACAzMxPZ2dm1WlcyHe9pIIsqLCzEhg0bMGjQIAwfPrzS35QpU5CXl4fNmzcjMDAQ9vb2+OWXX/TmsWTJkkrzdXV1BVA5wXjqqadQWlqKL7/8Um/4p59+CpVKhQEDBgAAYmJiYGdnhwULFlRqpdK2SERFRcHR0RFffPGFXivFv//9b+Tk5FTqIcQU3t7eiIyMxNdff4309PRK46W6LtW2pJQvkxACn3/+eaVpq9pOhubZr18/fP/997hw4YJueGZmJr799lv06NEDbm5ukvMgovrB3t4eKpVKr6X9woUL2LRpk9Hz0PbUU92xSbs8QP+Yl5OTY1KSUp62FX3mzJmVYtLIkSMRERGh19LesmVLnDlzRu+4/Pvvv2P//v1GrZOfnx86deqElStX6o07efIktm/fjqeeegoAYGdnh5iYGPzwww84cuRIpXJr1/+pp57CoUOHkJSUpBuXn5+PZcuWISgoqFb3j4wcORKlpaV47733Ko27d++e5P4ytJ8OHjyoV07AtH2v3TafffaZ3vCFCxcCQK3iMJmOZxrIojZv3oy8vDwMGTLE4PgnnnhC96C3UaNGYcSIEVi0aBFUKhVatmyJLVu2GLyGMiwsDADw2muvITo6Gvb29hg9ejQGDx6M3r17469//SsuXLiAjh07Yvv27fj+++8xdepUtGzZEkDZpT9//etf8d5776Fnz5545plnoFarcfjwYfj7+yM+Ph5eXl6YPXs25s+fj/79+2PIkCFISUnBkiVL8Pjjj+OFF16o1bZZvHgxevTogfbt22P8+PEICQlBZmYmkpKScOXKFfz+++8GPxcaGoqWLVvijTfewNWrV+Hm5ob169cbvGazqu1kyPvvv48dO3agR48eeOWVV9CgQQN8/fXXKC4uxocfflirdSWiumPgwIFYuHAh+vfvj+eeew5ZWVlYvHgxHnroIZw4ccKoeTg7O6NNmzZYvXo1WrVqhSZNmqBdu3YGr+fv168fHB0dMXjwYLz88su4c+cO/vnPf8Lb29tgo0t1EhMT0alTpyrPng4ZMgSvvvoqjh07hsceewwvvvgiFi5ciOjoaIwbNw5ZWVlYunQp2rZtq9dBhNQ6ffTRRxgwYADCw8Mxbtw4XZer7u7ues9y+Pvf/47t27cjIiICEyZMwCOPPIL09HSsXbsWv/32Gxo3boxZs2bhu+++w4ABA/Daa6+hSZMmWLlyJdLS0rB+/fpKlxyZIiIiAi+//DLi4+ORnJyMfv36wcHBAWfPnsXatWvx+eefY/jw4QY/O2jQIGzYsAFDhw7FwIEDkZaWhqVLl6JNmza4c+eOUdupoo4dOyI2NhbLli1DdnY2IiIicOjQIaxcuRIxMTG6zlXISmTps4nqjcGDBwsnJyeRn59f5TRxcXHCwcFB3LhxQ1y/fl0MGzZMuLi4CA8PD/Hyyy+LkydPVupy9d69e+LVV18VXl5eQqVS6XXRlpeXJ6ZNmyb8/f2Fg4ODePjhh8VHH32k1z2o1vLly8Wjjz4q1Gq18PDwEBEREbpuYbW+/PJLERoaKhwcHISPj4+YNGmSuH37tt40ERERom3btpXmr+1y9aOPPjK47qmpqWLMmDHC19dXODg4iGbNmolBgwaJdevW6aYx1OXqn3/+KaKiokTDhg2Fp6enGD9+vPj9999N2k4w0OXdsWPHRHR0tGjYsKFwcXERvXv3FgcOHNCbRtslY8UuAavqMpeIbEdVv++K/v3vf4uHH35YqNVqERoaKlasWGGwq1QAYvLkyQbnceDAAREWFiYcHR31jkeG5rN582bRoUMH4eTkJIKCgsQHH3wgli9fLgCItLQ03XTVdbl69OhRAUC8++67VU5z4cIFAUBMmzZNN+ybb74RISEhwtHRUXTq1En8/PPPlbpclVonIYTYuXOn6N69u3B2dhZubm5i8ODB4s8//6y0/IsXL4oxY8YILy8voVarRUhIiJg8ebJed6apqali+PDhonHjxsLJyUl06dJFbNmyRW8+2mPy2rVrKy0jNjZWuLq6VrkNli1bJsLCwoSzs7No1KiRaN++vZg5c6a4du2abpqK21qj0Yi///3vIjAwUKjVavHoo4+KLVu2mLSdDO37u3fvivnz54vg4GDh4OAgAgICxOzZs/W6KxeirMvVgQMHVloXU7rhJWkqIXh3CBERERERVY33NBARERERkSQmDUREREREJIlJAxERERERSbJo0vDLL79g8ODB8Pf3h0qlMqo7tr179+Kxxx6DWq3GQw89hISEBEsWkYiIZMIYQURkOyyaNOTn56Njx44GH+plSFpaGgYOHIjevXsjOTkZU6dOxUsvvYSff/7ZksUkIiIZMEYQEdkOq/WepFKpsHHjRsTExFQ5zVtvvYUff/xR72mIo0ePRnZ2NrZt22aFUhIRkRwYI4iIlE1RD3dLSkpCVFSU3rDo6GhMnTq1ys8UFxejuLhY916j0eDWrVto2rSpSY8qJyKqq4QQyMvLg7+/f60e/CQ3xggiIvMyJT4oKmnIyMiAj4+P3jAfHx/k5uaisLAQzs7OlT4THx+P+fPnW6uIREQ26/Lly2jevLncxagxxggiIsswJj4oKmmoidmzZ2P69Om69zk5OWjRogUuX74MNze3aj//6Y7/IeHABZRqKl+lZW+nQly3IEzr28qsZSYisqbc3FwEBASgUaNGchfF6hgjiIiqZkp8UFTS4Ovri8zMTL1hmZmZcHNzM9iCBABqtRpqtbrScDc3N6MCwpiIR7DySCbsDNzZoVIBsRGPwM3N1bgVICJSMFu/HIcxgojIMoyJD4q6uDU8PBy7du3SG7Zjxw6Eh4dbbJnBnq74YFgH2JXbVvYqFexUwAfDOiDIk8GAiEgJGCOIiORj0aThzp07SE5ORnJyMoCy7vKSk5Nx6dIlAGWnjceMGaObfuLEiTh//jxmzpyJM2fOYMmSJVizZg2mTZtmyWJiROcA/PhaD937sT2CsHtGJEZ0DrDocomI6jPGCCIi22HRy5OOHDmC3r17695rryuNjY1FQkIC0tPTdcEBAIKDg/Hjjz9i2rRp+Pzzz9G8eXP861//QnR0tCWLCQAIbPqgtWh631ZwcVTUlVtERHUOYwQRke2w6FEvMjISUo+BMPQkz8jISBw/ftyCpSIiIiVgjCAish2KuqeBiIiIiIiUh0kDERERERFJYtJARERERESSmDQQEREREZEkJg1ERERERCSJSQMREREREUli0kBERERERJKYNBARERERkSQmDUREREREJIlJAxERERERSWLSQEREREREkpg0EBERERGRJCYNREREREQkiUkDERERERFJYtJARERERESSmDQQEREREZEkJg1ERERERCSJSQMREREREUli0kBERERERJKYNBARERERkSQmDUREREREJIlJAxERERERSWLSQEREREREkpg0EBERERGRJCYNREREREQkiUkDERERERFJYtJARERERESSmDQQEREREZEkJg1ERERERCSJSQMREREREUli0kBERERERJKYNBARERERkSQmDUREREREJIlJAxERERERSWLSQEREREREkpg0EBERERGRJCYNREREREQkiUkDERERERFJYtJARERERESSmDQQEREREZEkqyQNixcvRlBQEJycnNC1a1ccOnSoymkTEhKgUqn0/pycnKxRTCIisjLGByIi22DxpGH16tWYPn065s6di2PHjqFjx46Ijo5GVlZWlZ9xc3NDenq67u/ixYuWLiYREVkZ4wMRke2weNKwcOFCjB8/HmPHjkWbNm2wdOlSuLi4YPny5VV+RqVSwdfXV/fn4+Nj6WISEZGVMT4QEdkOiyYNJSUlOHr0KKKioh4s0M4OUVFRSEpKqvJzd+7cQWBgIAICAvD000/j1KlTVU5bXFyM3NxcvT8iIlI2a8QHgDGCiMhcLJo03LhxA6WlpZVagnx8fJCRkWHwM61bt8by5cvx/fff45tvvoFGo0G3bt1w5coVg9PHx8fD3d1d9xcQEGD29SAiIvOyRnwAGCOIiMxFcb0nhYeHY8yYMejUqRMiIiKwYcMGeHl54euvvzY4/ezZs5GTk6P7u3z5spVLTERE1mBqfAAYI4iIzKWBJWfu6ekJe3t7ZGZm6g3PzMyEr6+vUfNwcHDAo48+inPnzhkcr1aroVara11WIiKyHmvEB4AxgojIXCx6psHR0RFhYWHYtWuXbphGo8GuXbsQHh5u1DxKS0vxxx9/wM/Pz1LFJCIiK2N8ICKyLRY90wAA06dPR2xsLDp37owuXbrgs88+Q35+PsaOHQsAGDNmDJo1a4b4+HgAwIIFC/DEE0/goYceQnZ2Nj766CNcvHgRL730kqWLSkREVsT4QERkOyyeNIwaNQrXr1/HnDlzkJGRgU6dOmHbtm26m98uXboEO7sHJzxu376N8ePHIyMjAx4eHggLC8OBAwfQpk0bSxeViIisiPGBiMh2qIQQQu5CmFNubi7c3d2Rk5MDNzc3oz9XUHIPbeb8DAD4c0E0XBwtnk8REVlFTY+LdRFjBBHRA6YcExXXexIRERERESkLkwYiIiIiIpLEpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksQ+40yUdiMfa45cxpXbhWju4YyRnQMQ7Okqd7GIiEhmjA9EVJcxaTDBmiOXMWv9CahUKgghoFKp8PW+VHwwrANGdA6Qu3hERCQTxgciqut4eZKR0m7kY9b6E9AIoFQj9P6/tf4ELtzIl7uIREQkA8YHIqoPmDQYac2Ry1CpVAbHqVQqrD5y2colIiIiJWB8IKL6gEmDka7cLoQQwuA4IQSu3C60comIiEgJGB+IqD5g0mCk5h7Oki1JzT2crVwiIiJSAsYHIqoPmDQYaWTnAMmWpFG80Y2IqF5ifCCi+oBJg5GCPV3xwbAOsCvXmGSvUsFOBXwwrAOC2K0eEVG9xPhARPUBu1w1wYjOAWjXzA0DPv8NADC2RxBe6BrIgEBEVM8xPhBRXcekwUSBTR8EgOl9W8HFkZuQiIgYH4iobuPlSUREREREJIlJAxERERERSWLSQEREREREknjBJREpkkYjUCoESjUCGu1/DSBguGtLADDU66XQjRN67ytOrzdfwy+NWJbQjRP3l6mdTvcfAhpxf1y5aQQAjfa1KHut/ZxGCKhUQIfmjasoDRERkWUxaSAyAyHKKoLaCm7ZsPvjKlQktdMDeFB5vF8x1FYcIcrGaYdpP6NXyRVl836wHP15i3LT6U9RcXi5YRXGa+evqVD5Lb9ONWHoY2XbUKBUo788KmNvZ/jhYURERNbApIEsSqMRei2oQOWWYoOV13LT6rXalp/ejJVKgbKW7NL7rdv3Sh+0bpeWb/HWAKX3K7eCFVwiIiKqJ5g02LCKrdu6SzgEAGG4wq1txdZWvitNU6E1WYiySrJ2WRpRVnHWVpTLt44/aDF/UDalS88pxN6U67h+pxheDdWIbO0FP3dnuYtFREREpChMGixECIGSUo2upVpb0S4VQnettkbcv25bY7jirU0Eyl/jrPu8xjYq5Uq2NyULy349DxXKkiYVgB9OXMPLvUIQ0cpb5tLVH0zciIioKmk38rHmyGVcuV2I5h7OGNk5AMF8aKIsmDTUghACRXdL7/9pyv7fK3t94cYd7D7DipBSpecUYtmv5/XvM7j//+tfzqO1jxt83Z3kKl69wcSNiJSMFVZ5rTlyGbPWn4BKpYIQAiqVCl/vS8UHwzpgROcAuYtX7zBpMEL5xOBWfolu+OELt6FuYF9pelaElG9vynXd/qlIBWBPShae7dJCN4yt4ebHxI2IlIwVVnml3cjHrPUn7l9yrd8N3VvrT+DxoCYIYgJnVUwaqiGEwPFL2br3RXdLy42rPD0rQrbh+p3iqrvSvD9ei0mgZZiauBEpUVLqTd3r8vHh4PlbcHKo3KhEtiE9pxBvrT9RFucrVFhnrj+BBnZ2jOUW9t2hS5LjF+74H2NEOeEtm1p8GXy4m5lpK0KGaCtCJD+vhmrJ/eTVUA1APwnU6O4tKfv/9S/nkZFTZLUy1zWmJG5ERNbEWF5z6TmF+O7QJXyx+yy+O3QJ6TmFNZoPY4Ty8EyDmfFLbhsiW3vhhxPXDI4TAHq3LjuDwNZwy9EmblVtW23iRkRkbYzlNWPOM/OMEcrDMw1mZmwLNsnLz90ZL/cKgarczrJTASoV8HKvEN1pZwYOy4ls7SW5bbWJGxGRtTGWm87cZ+YZI5SHSYOZ8UtuOyJaeSN+aHvd+/7tfLFwRCe91hAGDssxNnEjIrI2xnLTmfuSLsYI5WHSYGb8ktsWH7cH+2NEWECl/cPAYVnGJG5ERNbGWG46S5yZZ4xQFt7TYAERrbwR1NQVszb8AaDsS973EV8eZGyQNnB8/ct5XQcadqqyA6ChwMGuWU1XMXFjjzNEpASM5aax1D0IjBHKwaTBQvglrzuMDRzsmpWIqG5hLDeesR2MyIkNe7XDpIHICNUFDj6fQzmMCQoMHERE5mXqmXlrY8Ne7TFpIDIDds2qDMYEBQYOIqoLlNj4odRLutiwZx5MGojMgF2zys+YoCAgGDhIdkqs7JFtUXLjhxIv6WLDnnkwaSAyAz6ExvKqq2gZExS0rxk4SC5KruzVJ7acuLHV3HRs2DMPJg1EZmALN4DZMmMqWsYGBQYOkouclT0lV5KtXTZbT9zYam46Uxv25Pi9KPk3qsWkgeosa/4AlX4DmC0ztqJlbFDgGSGSi1yVPSVXkq1dtrrQSs9Wc9OZ0rAnx+9Fyb/R8qzycLfFixcjKCgITk5O6Nq1Kw4dOiQ5/dq1axEaGgonJye0b98eW7dutUYxqQ7Zm5KFGWt/x5YT1/Df8zex5cQ1zFj7O/b9z7QnUpqCD6GxDGOfMmrMg/j4sD7lqU/xQY7KXvlKskZA7//Xv5xHRk6R2Zep5LKZ+6nFctA2kBjCxg/DjH1YnxzfSSX/RiuyeNKwevVqTJ8+HXPnzsWxY8fQsWNHREdHIyvL8A/zwIEDePbZZzFu3DgcP34cMTExiImJwcmTJy1dVKoj5PwBVveE6boiPacQ3x26hC92n8V3hy4hPafQYssytqJlTFDgU16Vpb7FBzkqe0quJMtRtrrQSm9K44c1j9VKZ0zDnhzfSSX/RiuyeNKwcOFCjB8/HmPHjkWbNm2wdOlSuLi4YPny5Qan//zzz9G/f3+8+eabeOSRR/Dee+/hsccew5dffmnpopKNqO4gaEs/QFtk7bM4plS0jAkKPCOkHPUtPshxpkvJlWQ5ymaJxM3aFXNjGz/kOOOudNU17MnxnVTyb7Qii97TUFJSgqNHj2L27Nm6YXZ2doiKikJSUpLBzyQlJWH69Ol6w6Kjo7Fp0yaTll1Qcg8NSu6ZNL2h10IIFN0t1b0vruJ1RcZOR6b59ex1rDhwodJ1fy92C0aPhz0BAJm5RZI/wMzcIt0+Nff+rOv7PSO3SPJ64KCmrnoHZWNUt83CWzaVvBa1W8umer/Rxs4OutdDOvhD7WCvN97YaZTG3k6ld2wyRU0/Z0lyxgfAfDHClPjg4eKIF7sFY/n+NN3vRnvv04vdgtHYxcHs30MPFwfJ+yg8LLBMY1mibBm5Rfj17HXcvFOCpg0d0fNhL/iWOyaZejypbp8aE5MsoWtwU/i7O2HO5j8BAH0f8UHvUG/4uDmh6G6pRY7VxjJ3HDTn/Kr/jVr/92KuZVojPqiEEFXVr2rt2rVraNasGQ4cOIDw8HDd8JkzZ2Lfvn04ePBgpc84Ojpi5cqVePbZZ3XDlixZgvnz5yMzM7PS9MXFxSgufpCF5ebmIiAgAAFT18BO7WLmNSIisj2a4gJc/mwkcnJy4ObmJndxAFgnPgCMEUREUkyJD1a5EdqS4uPj4e7urvsLCAiQu0hERKQQjBFEROZh0cuTPD09YW9vX6kFKDMzE76+vgY/4+vra9L0s2fP1jtdrW1FOvTXPmZpURNC4FDa7VrPx5Diu6WYmHgMALD0+cegruKpieacTo5lXrqZj7k/lJ1CjW7jg8hQb73TxcbOa+m+VBy6cAuGzo2pVECXoCaYGNESAPDb2RtYfiBN75Sx9hIAS54yNoa198GvZ69jxf4LBi+HqLgtqpvX2qOXse1kBjQG9oGdquz+gBFhASYvV2kycovw9sY/qvyuxQ9tr3dq3xq/PXs7FToHedRofXJzc+H3WY0+ajHWiA+A5WPEwfO3aj2Pqpjze5WZW4Rfyl220+thL4OXp8hx7DdH2Uw5NpmLKTGpuvKXZ+x0UkzdHtYsm9LnBZj392LO36hUXJ0R3apG62pKfLBo0uDo6IiwsDDs2rULMTExAACNRoNdu3ZhypQpBj8THh6OXbt2YerUqbphO3bs0Dt9XZ5arYZaXfnGJRfHBnBxrP3qCSGs8gh0tYO9Ucsx53TWWKa272GtHaczsf10ZrV9Dxual4+bk+R1fz5uTrrPRLXxQbtm7tiTkqV7TkPv1t6K6x3H0vsgPacQKw5c0Ntm2iCy/EAa2jVzr3KbGFpm1CM++OlkhsHpBYC+j/jCycG+VstVgqTUm5LftQOpN6vsT99Svz17O1WNj2n3zHAsNDdrxAfA8jHCGvEBqP33KrCpK/7S1NXsy6xqOlOO/eYo2+2Cu5L3st0uuGv2fWVKTALKGiO0Np+4hqhHfKp9dpCx+6AiY4/VtVlmTcumVZPtYYzalguw3O+lNr/R6uLqX8IDEeRpWpkB0+KDxS9Pmj59Ov75z39i5cqVOH36NCZNmoT8/HyMHTsWADBmzBi9G+Fef/11bNu2DZ988gnOnDmDefPm4ciRI1UGEVKu8l2fatWm61NTex7xdXfCs11a4LUnH8azXVooupJaG+UPvGuPXtbrucPcPUmV77VD21uH4V47bLsHK1vqzcKWMT7UntTvX675mfvYbww5urM1JSbtTcnC2xv/0L3fdjLDoj0ZGXus1jL396g61t4edUF1cXX1kcsWL4PFm59GjRqF69evY86cOcjIyECnTp2wbds2+Pj4AAAuXboEO7sHuUu3bt3w7bff4p133sHbb7+Nhx9+GJs2bUK7du0sXVQyM3M//bT8U5crXnZUF/vYr3gQN9QKU7E1b9vJDPx0MkPXmmeJym9EK2+09nGTPItj65VuY58uTbXD+FA71f3+5ZqfHE++NuWJv+ZibEyqKokCLPsUamOO1YD5v0fVkWt72Lrq4uqV25Z/BodVzllPmTKlypagvXv3Vho2YsQIjBgxwsKlIkszteJoTCXZ2IOgrTPmIG7MgddSlV/tWZyq2Hql29QKiDHfXTKM8aFmzF3xMuf85Gg0kKtRyZiYJEcSpVXdsVqOCryc28OWVRdXm3tYPubYfO9J9IAxpxeteQrSlNPFppyqrOuXHRl7at+YS4BMvaTLXN8POR5iZU6mnNrnaXaSg7kvATTn/OS4VAgoq8AvHNEJgzr444mQphjUwd8qD26sLiYp+cwrn8ptO6qLq6M6W75nOCYNdYQxFRdrV26MrTjKcf2rkhl7EDfmwCtX5dfU62mVyJgKCL+7JBdzV7zMOT85Gw2U2KgkVxJljNpeEVCThiUlbw8lqy6u1uQmaFMpr0uNesRclzQYc3pRQFjkFKTUOhh7upinKvUZexA39hIgY06fW+IUdV24lKy6U/v87pJczH0JoDnnV9/uP6uOHPdbGMuU/W6uex8ssT3kukTU2suVO64yaZCJOW88Mqbion1tzsqNMetQH26aNVV1BxljD+KmHHjlqvxWt1xbV9++u6Qc5q54mXt+cldulETJSZSx+92cDUvm3h7WvpFb7uXKGVeZNMjA3K26xlZczHlTsinrUNdvmjWFMQcZYw/i5jzwsvJbM5b47vKmajKGuSteps7PmO+puSs3tvzbUGoSJdcVAebaHnL1xFRfe4Bi0iADc//4jK24mPMUpDnXQcmnbs3J2IOMKcHbXAfe+pS4mZMp393adqH7ZKiPeQtPNs/cFVGldtEp1zLNzdgkSomXvFiiYckcSaVcl4jW10tTmTTIwNxdkRpTcREQZj0Fac4DiJJP3ZqTKQcZUyoD5jjw1pfEzdyMb6WrfRe6bfzcrLJOZFvM3ZqvxC4661OrrlIveVFqw5JcZ8lNWa4tnyGriL0nycDcXZEa01ONuZ/ka+7eD+TqKs+aTD24WbMXkLrQ25FcqvvumqsL3d1n2IUryU+OLjpt/QnzxlJyb2xK7UZbrp6YjF1uXeuSm2caZGCJG4+MaZk25ylIS7RM1/WbZpXaUqOl1GtubYHUd9fYM0zV/fay8nhfCclPjpbd+nLPlZIveVHqFQFynSU3Zrl18QwZkwYZWOrGI2Mq3eY6BanUA4iS2cIlQHU9cZODubrQ9W7E+0pIfnI0fii9wcVclJ4cKbFhSa66iDHL/e7QJcUmgTXFpEEmSu2K1JSKrRIPIErGRKt+MlcXuk+Gyp9UEsnR+GELDS7mYAvJkRIbluSqi1S3XKUngTXBpEFGSrzxyNSKrRIPIErGRKv+MV8XurZ54xzVLXI0ftSXBpf6khxZglx1Eanl2kISaComDdVQqVRo39wdRXdL7/9pUHS3FMX3SlFyr6oc0jzkOoCwYmtZTLTqFzm60CXrCW/Z1GLz/jM9R/d6f+oNPN81EMGerhZbnrHCWzbF6MdbYPWRy7hyuxDNPZwxqnMAgixYNjmWKYdSjcBb609ApVJBCKH7/8GwDhj6WDO5i0cm8HV3wpYq6nAAML1vK5v7/qqEEJat+VpZbm4u3N3dkZOTAzc3y3ZRWKoRD5KJexq9xKLknsYsy9j3v6wqKxt1qWchorouI6eoVsmAvZ0KXYKb1GjZ1jwuKp2tbIs1Ry5j1voTuhsn7VUqCJRVHkd0DpC3cGRRF27k1/nkqL5Ye+RylUmgUn7HphwTmTRYSKlGoPheKUo1AhoNUCoESjUCQgjda40G0Nx/L4SAEGV31mt0r8v+X80uwI4/M5GZWwyvRo6IbOUNbze2PBLVJ0wazMMWtkXajXz0+WSvLmEoz04F7J4RyUokkY1QehJoyjGRlydZiL2dCi6O5tm87Zu7o387P71hQpt43E8uSjX3k4/7iYi4P03Z/wqvIe7/hy5ZQRXjNOLBf40QegnNgwSncsJDREQ1s+bIZahUKhg6mKpUKqw+chlv9Q+VoWREZKogT9c683tl0mCjVCoVGthX9WgR+Wk0ZUlK+SQDqBwDRYVbhHQJDPQTHe3A8kmNOYlyiVeppsJfuWEaAd0ZI+1rIiJzunK7EFVdBCCEwJXbhVYuERERkwayEDu7soTGvspnJtYdGo0od5nZg0RJl+sIUe41dCME9M/k6BIi8eBskUajn2xVTJoqzbtcOlU+ASv/XjufivTGlytPxfflEzpTVX0W6sHZKiZiVN8193CWPNPQ3IM9aRGR9TFpIKolOzsV7KDij8mMHpzZEbrL77T3BpVvgZVKLwwmSXrDJKZD5fqaMalMxcv9tPOsmGxpEzyNeJCQaTT6iaOA0Esg6376TVojOwfg632pBscJITBKITdQElH9wnoOESmOvZ0K9nasJlP9FOzpig+Gdaiy1xUl3URJRPUHkwYiIiKFGdE5AI8HNVF0rytEVL8waSAiIlKgutTrChHZPju5C0BERERERMrGpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksSkgYiIiIiIJDFpICIiIiIiSUwaiIiIiIhIEpMGIiIiIiKSxKSBiIiIiIgkMWkgIiIiIiJJTBqIiIiIiEgSkwYiIiIiIpLEpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksSkgYiIiIiIJFk0abh16xaef/55uLm5oXHjxhg3bhzu3Lkj+ZnIyEioVCq9v4kTJ1qymEREZGWMD0REtqWBJWf+/PPPIz09HTt27MDdu3cxduxYTJgwAd9++63k58aPH48FCxbo3ru4uFiymEREZGWMD0REtsViScPp06exbds2HD58GJ07dwYALFq0CE899RQ+/vhj+Pv7V/lZFxcX+Pr6WqpoREQkI8YHIiLbY7HLk5KSktC4cWNdQACAqKgo2NnZ4eDBg5KfTUxMhKenJ9q1a4fZs2ejoKDAUsUkIiIrY3wgIrI9FjvTkJGRAW9vb/2FNWiAJk2aICMjo8rPPffccwgMDIS/vz9OnDiBt956CykpKdiwYYPB6YuLi1FcXKx7n5uba54VICIii7BWfAAYI4iIzMXkpGHWrFn44IMPJKc5ffp0jQs0YcIE3ev27dvDz88Pffr0QWpqKlq2bFlp+vj4eMyfP7/GyyMiIvNQWnwAGCOIiMzF5KRhxowZiIuLk5wmJCQEvr6+yMrK0ht+79493Lp1y6TrUbt27QoAOHfunMGgMHv2bEyfPl33Pjc3FwEBAUbPn4iIzENp8QFgjCAiMheTkwYvLy94eXlVO114eDiys7Nx9OhRhIWFAQB2794NjUajO9AbIzk5GQDg5+dncLxarYZarTZ6fkREZBlKiw8AYwQRkblY7EboRx55BP3798f48eNx6NAh7N+/H1OmTMHo0aN1PWNcvXoVoaGhOHToEAAgNTUV7733Ho4ePYoLFy5g8+bNGDNmDHr16oUOHTpYqqhERGRFjA9ERLbHog93S0xMRGhoKPr06YOnnnoKPXr0wLJly3Tj7969i5SUFF3vF46Ojti5cyf69euH0NBQzJgxA8OGDcMPP/xgyWISEZGVMT4QEdkWlRBCyF0Ic8rNzYW7uztycnLg5uYmd3GIiGTH4+ID3BZERA+Ycky06JkGIiIiIiKyfUwaiIiIiIhIEpMGIiIiIiKSxKSBiIiIiIgkMWkgIiIiIiJJTBqIiIiIiEgSkwYiIiIiIpLEpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksSkgYiIiIiIJDFpICIiIiIiSUwaiIiIiIhIEpMGIiIiIiKSxKSBiIiIiIgkMWkgIiIiIiJJTBqIiIiIiEgSkwYiIiIiIpLEpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksSkgYiIiIiIJDFpICIiIiIiSUwaiIiIiIhIEpMGIiIiIiKSxKSBiIiIiIgkMWkgIiIiIiJJTBqIiIiIiEgSkwYiIiIiIpLEpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksSkgYiIiIiIJDFpICIiIiIiSUwaiIiIiIhIEpMGIiIiIiKSxKSBiIiIiIgkWSxp+Nvf/oZu3brBxcUFjRs3NuozQgjMmTMHfn5+cHZ2RlRUFM6ePWupIhIRkUwYI4iIbIvFkoaSkhKMGDECkyZNMvozH374Ib744gssXboUBw8ehKurK6Kjo1FUVGSpYhIRkQwYI4iIbItKCCEsuYCEhARMnToV2dnZktMJIeDv748ZM2bgjTfeAADk5OTAx8cHCQkJGD16tFHLy83Nhbu7O3JycuDm5lbb4hMR2TwlHxcZI4iI5GPKMVEx9zSkpaUhIyMDUVFRumHu7u7o2rUrkpKSZCwZERHJjTGCiEheDeQugFZGRgYAwMfHR2+4j4+PbpwhxcXFKC4u1r3PyckBUJY5ERHRg+OhhU8sWxRjBBGR+ZkSH0xKGmbNmoUPPvhAcprTp08jNDTUlNnWSnx8PObPn19peEBAgNXKQERkC/Ly8uDu7m6x+TNGEBHZJmPig0lJw4wZMxAXFyc5TUhIiCmz1PH19QUAZGZmws/PTzc8MzMTnTp1qvJzs2fPxvTp03XvNRoNbt26haZNm0KlUplUhtzcXAQEBODy5cs2e62rra+DrZcfsP11sPXyA7a/DuYuvxACeXl58Pf3N0PpqsYYoWy2Xn7A9tfB1ssP2P462Hr5AfOugynxwaSkwcvLC15eXjUumJTg4GD4+vpi165dugCQm5uLgwcPSvauoVaroVar9YYZ231fVdzc3Gz2i6Rl6+tg6+UHbH8dbL38gO2vgznLb8kzDFqMEbbB1ssP2P462Hr5AdtfB1svP2C+dTA2PljsRuhLly4hOTkZly5dQmlpKZKTk5GcnIw7d+7opgkNDcXGjRsBACqVClOnTsX777+PzZs3448//sCYMWPg7++PmJgYSxWTiIhkwBhBRGRbLHYj9Jw5c7By5Urd+0cffRQAsGfPHkRGRgIAUlJSdDelAcDMmTORn5+PCRMmIDs7Gz169MC2bdvg5ORkqWISEZEMGCOIiGyLxZKGhIQEJCQkSE5T8U5tlUqFBQsWYMGCBZYqliS1Wo25c+dWOpVtS2x9HWy9/IDtr4Otlx+w/XWw9fIbgzHC+my9/IDtr4Otlx+w/XWw9fID8q2DxR/uRkREREREtk0xD3cjIiIiIiJlYtJARERERESSmDQQEREREZEkJg3lLF68GEFBQXByckLXrl1x6NAhuYtklHnz5kGlUun9WfOJqzXxyy+/YPDgwfD394dKpcKmTZv0xgshMGfOHPj5+cHZ2RlRUVE4e/asPIU1oLryx8XFVdon/fv3l6ewBsTHx+Pxxx9Ho0aN4O3tjZiYGKSkpOhNU1RUhMmTJ6Np06Zo2LAhhg0bhszMTJlKXJkx6xAZGVlpP0ycOFGmEuv76quv0KFDB10/2+Hh4fjpp59045W+/esbW40PgO3FCFuPDwBjhNxsPT4AyowRTBruW716NaZPn465c+fi2LFj6NixI6Kjo5GVlSV30YzStm1bpKen6/5+++03uYskKT8/Hx07dsTixYsNjv/www/xxRdfYOnSpTh48CBcXV0RHR2NoqIiK5fUsOrKDwD9+/fX2yffffedFUsobd++fZg8eTL++9//YseOHbh79y769euH/Px83TTTpk3DDz/8gLVr12Lfvn24du0annnmGRlLrc+YdQCA8ePH6+2HDz/8UKYS62vevDn+8Y9/4OjRozhy5AiefPJJPP300zh16hQA5W//+sTW4wNgWzHC1uMDwBghN1uPD4BCY4QgIYQQXbp0EZMnT9a9Ly0tFf7+/iI+Pl7GUhln7ty5omPHjnIXo8YAiI0bN+reazQa4evrKz766CPdsOzsbKFWq8V3330nQwmlVSy/EELExsaKp59+Wpby1ERWVpYAIPbt2yeEKNveDg4OYu3atbppTp8+LQCIpKQkuYopqeI6CCFERESEeP311+UrlIk8PDzEv/71L5vc/nWZLccHIWw7Rth6fBCCMUIJ6kJ8EEL+GMEzDQBKSkpw9OhRREVF6YbZ2dkhKioKSUlJMpbMeGfPnoW/vz9CQkLw/PPP49KlS3IXqcbS0tKQkZGhtz/c3d3RtWtXm9kfALB37154e3ujdevWmDRpEm7evCl3kaqkfYBWkyZNAABHjx7F3bt39fZBaGgoWrRoodh9UHEdtBITE+Hp6Yl27dph9uzZKCgokKN4kkpLS7Fq1Srk5+cjPDzcJrd/XVUX4gNQd2JEXYkPAGOENdlyfACUEyMs9nA3W3Ljxg2UlpbCx8dHb7iPjw/OnDkjU6mM17VrVyQkJKB169ZIT0/H/Pnz0bNnT5w8eRKNGjWSu3gmy8jIAACD+0M7Tun69++PZ555BsHBwUhNTcXbb7+NAQMGICkpCfb29nIXT49Go8HUqVPRvXt3tGvXDkDZPnB0dETjxo31plXqPjC0DgDw3HPPITAwEP7+/jhx4gTeeustpKSkYMOGDTKW9oE//vgD4eHhKCoqQsOGDbFx40a0adMGycnJNrX96zJbjw9A3YoRdSE+AIwR1mSr8QFQXoxg0lAHDBgwQPe6Q4cO6Nq1KwIDA7FmzRqMGzdOxpLVX6NHj9a9bt++PTp06ICWLVti79696NOnj4wlq2zy5Mk4efKkoq9xrk5V6zBhwgTd6/bt28PPzw99+vRBamoqWrZsae1iVtK6dWskJycjJycH69atQ2xsLPbt2yd3saiOYYxQHsYI67HV+AAoL0bw8iQAnp6esLe3r3TXeWZmJnx9fWUqVc01btwYrVq1wrlz5+QuSo1ot3ld2R8AEBISAk9PT8XtkylTpmDLli3Ys2cPmjdvrhvu6+uLkpISZGdn602vxH1Q1ToY0rVrVwBQzH5wdHTEQw89hLCwMMTHx6Njx474/PPPbWr713V1LT4Ath0j6mJ8ABgjLMWW4wOgvBjBpAFlOyUsLAy7du3SDdNoNNi1axfCw8NlLFnN3LlzB6mpqfDz85O7KDUSHBwMX19fvf2Rm5uLgwcP2uT+AIArV67g5s2bitknQghMmTIFGzduxO7duxEcHKw3PiwsDA4ODnr7ICUlBZcuXVLMPqhuHQxJTk4GAMXsh4o0Gg2Ki4ttYvvXF3UtPgC2HSPqYnwAGCPMrS7GB0ABMcJit1jbmFWrVgm1Wi0SEhLEn3/+KSZMmCAaN24sMjIy5C5atWbMmCH27t0r0tLSxP79+0VUVJTw9PQUWVlZchetSnl5eeL48ePi+PHjAoBYuHChOH78uLh48aIQQoh//OMfonHjxuL7778XJ06cEE8//bQIDg4WhYWFMpe8jFT58/LyxBtvvCGSkpJEWlqa2Llzp3jsscfEww8/LIqKiuQuuhBCiEmTJgl3d3exd+9ekZ6ervsrKCjQTTNx4kTRokULsXv3bnHkyBERHh4uwsPDZSy1vurW4dy5c2LBggXiyJEjIi0tTXz//fciJCRE9OrVS+aSl5k1a5bYt2+fSEtLEydOnBCzZs0SKpVKbN++XQih/O1fn9hyfBDC9mKErccHIRgj5Gbr8UEIZcYIJg3lLFq0SLRo0UI4OjqKLl26iP/+979yF8koo0aNEn5+fsLR0VE0a9ZMjBo1Spw7d07uYknas2ePAFDpLzY2VghR1q3eu+++K3x8fIRarRZ9+vQRKSkp8ha6HKnyFxQUiH79+gkvLy/h4OAgAgMDxfjx4xVVwTBUdgBixYoVumkKCwvFK6+8Ijw8PISLi4sYOnSoSE9Pl6/QFVS3DpcuXRK9evUSTZo0EWq1Wjz00EPizTffFDk5OfIW/L4XX3xRBAYGCkdHR+Hl5SX69OmjCwZCKH/71ze2Gh+EsL0YYevxQQjGCLnZenwQQpkxQiWEEOY/f0FERERERHUF72kgIiIiIiJJTBqIiIiIiEgSkwYiIiIiIpLEpIGIiIiIiCQxaSAiIiIiIklMGoiIiIiISBKTBiIiIiIiksSkgYiIiIiIJDFpICIiIiIiSUwaiKoRFxeHmJgYuYtBREQKxBhB9QWTBiIiIiIiksSkgagWFi5ciPbt28PV1RUBAQF45ZVXcOfOHb1p/vnPfyIgIAAuLi4YOnQoFi5ciMaNG+vG//777+jduzcaNWoENzc3hIWF4ciRI1ZeEyIiMjfGCKpLmDQQ1YKdnR2++OILnDp1CitXrsTu3bsxc+ZM3fj9+/dj4sSJeP3115GcnIy+ffvib3/7m948nn/+eTRv3hyHDx/G0aNHMWvWLDg4OFh7VYiIyMwYI6guUQkhhNyFIFKyuLg4ZGdnY9OmTdVOu27dOkycOBE3btwAAIwePRp37tzBli1bdNO88MIL2LJlC7KzswEAbm5uWLRoEWJjYy1RfCIisiDGCKoveKaBqBZ27tyJPn36oFmzZmjUqBH+8pe/4ObNmygoKAAApKSkoEuXLnqfqfh++vTpeOmllxAVFYV//OMfSE1NtVr5iYjIchgjqC5h0kBUQxcuXMCgQYPQoUMHrF+/HkePHsXixYsBACUlJUbPZ968eTh16hQGDhyI3bt3o02bNti4caOlik1ERFbAGEF1DZMGoho6evQoNBoNPvnkEzzxxBNo1aoVrl27pjdN69atcfjwYb1hFd8DQKtWrTBt2jRs374dzzzzDFasWGHRshMRkWUxRlBd00DuAhDZgpycHCQnJ+sN8/T0xN27d7Fo0SIMHjwY+/fvx9KlS/WmefXVV9GrVy8sXLgQgwcPxu7du/HTTz9BpVIBAAoLC/Hmm29i+PDhCA4OxpUrV3D48GEMGzbMWqtGRES1xBhB9YIgIkmxsbECQKW/cePGiYULFwo/Pz/h7OwsoqOjxX/+8x8BQNy+fVv3+WXLlolmzZoJZ2dnERMTI95//33h6+srhBCiuLhYjB49WgQEBAhHR0fh7+8vpkyZIgoLC2VaWyIiMgVjBNUX7D2JyMrGjx+PM2fO4Ndff5W7KEREpDCMEaRUvDyJyMI+/vhj9O3bF66urvjpp5+wcuVKLFmyRO5iERGRAjBGkK3gmQYiCxs5ciT27t2LvLw8hISE4NVXX8XEiRPlLhYRESkAYwTZCiYNREREREQkiV2uEhERERGRJCYNREREREQkiUkDERERERFJYtJARERERESSmDQQEREREZEkJg1ERERERCSJSQMREREREUli0kBERERERJKYNBARERERkaT/BwFQ65+Vhcu2AAAAAElFTkSuQmCC",
|
1725 |
+
"text/plain": [
|
1726 |
+
"<Figure size 800x300 with 2 Axes>"
|
1727 |
+
]
|
1728 |
+
},
|
1729 |
+
"metadata": {},
|
1730 |
+
"output_type": "display_data"
|
1731 |
+
}
|
1732 |
+
],
|
1733 |
+
"source": [
|
1734 |
+
"# Import packages\n",
|
1735 |
+
"from statsmodels.tsa.holtwinters import ExponentialSmoothing\n",
|
1736 |
+
"from statsmodels.graphics.tsaplots import plot_pacf, plot_acf\n",
|
1737 |
+
"import matplotlib.pyplot as plt\n",
|
1738 |
+
"\n",
|
1739 |
+
"# Plot ACF and PACF\n",
|
1740 |
+
"fig, ax = plt.subplots(1, 2, figsize=(8, 3))\n",
|
1741 |
+
"plot_acf(train[\"residuals\"], lags=30, ax=ax[0])\n",
|
1742 |
+
"ax[0].set_xlabel(\"Lags\")\n",
|
1743 |
+
"plot_pacf(train[\"residuals\"], lags=30, ax=ax[1])\n",
|
1744 |
+
"ax[1].set_xlabel(\"Lags\")\n",
|
1745 |
+
"plt.tight_layout()\n",
|
1746 |
+
"plt.show()"
|
1747 |
+
]
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"cell_type": "code",
|
1751 |
+
"execution_count": 5,
|
1752 |
+
"metadata": {},
|
1753 |
+
"outputs": [
|
1754 |
+
{
|
1755 |
+
"name": "stdout",
|
1756 |
+
"output_type": "stream",
|
1757 |
+
"text": [
|
1758 |
+
" lb_stat lb_pvalue\n",
|
1759 |
+
"1 13.917146 0.000191\n",
|
1760 |
+
"2 16.931975 0.000211\n",
|
1761 |
+
"3 18.861072 0.000292\n",
|
1762 |
+
"4 22.061208 0.000195\n",
|
1763 |
+
"5 23.398389 0.000283\n",
|
1764 |
+
"6 24.627916 0.000400\n",
|
1765 |
+
"7 27.059270 0.000325\n",
|
1766 |
+
"8 29.031125 0.000313\n",
|
1767 |
+
"9 29.344194 0.000567\n",
|
1768 |
+
"10 30.414797 0.000733\n"
|
1769 |
+
]
|
1770 |
+
}
|
1771 |
+
],
|
1772 |
+
"source": [
|
1773 |
+
"# Import packages\n",
|
1774 |
+
"from statsmodels.stats.diagnostic import acorr_ljungbox\n",
|
1775 |
+
"\n",
|
1776 |
+
"# Carry out Ljung-Box test\n",
|
1777 |
+
"print(acorr_ljungbox(train[\"residuals\"], return_df=True))"
|
1778 |
+
]
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"cell_type": "code",
|
1782 |
+
"execution_count": 6,
|
1783 |
+
"metadata": {},
|
1784 |
+
"outputs": [
|
1785 |
+
{
|
1786 |
+
"data": {
|
1787 |
+
"application/vnd.plotly.v1+json": {
|
1788 |
+
"config": {
|
1789 |
+
"plotlyServerURL": "https://plot.ly"
|
1790 |
+
},
|
1791 |
+
"data": [
|
1792 |
+
{
|
1793 |
+
"alignmentgroup": "True",
|
1794 |
+
"bingroup": "x",
|
1795 |
+
"hovertemplate": "residuals=%{x}<br>count=%{y}<extra></extra>",
|
1796 |
+
"legendgroup": "",
|
1797 |
+
"marker": {
|
1798 |
+
"color": "#636efa",
|
1799 |
+
"pattern": {
|
1800 |
+
"shape": ""
|
1801 |
+
}
|
1802 |
+
},
|
1803 |
+
"name": "",
|
1804 |
+
"offsetgroup": "",
|
1805 |
+
"orientation": "v",
|
1806 |
+
"showlegend": false,
|
1807 |
+
"type": "histogram",
|
1808 |
+
"x": [
|
1809 |
+
0.0029885509041491787,
|
1810 |
+
-1.3977715272270643,
|
1811 |
+
-0.48569421554674364,
|
1812 |
+
2.2099717953831686,
|
1813 |
+
2.446809977007419,
|
1814 |
+
2.3144994254786297,
|
1815 |
+
0.28556472864667626,
|
1816 |
+
0.40306903295868324,
|
1817 |
+
0.18403920366532134,
|
1818 |
+
-0.04208236753810013,
|
1819 |
+
-2.5501023923200705,
|
1820 |
+
-6.29759906988788,
|
1821 |
+
-10.229186708520444,
|
1822 |
+
-2.368196190757004,
|
1823 |
+
-1.774909044075656,
|
1824 |
+
-2.944427246017426,
|
1825 |
+
-2.3164716464191315,
|
1826 |
+
8.894391720365405,
|
1827 |
+
12.773425732045155,
|
1828 |
+
8.021542496626495,
|
1829 |
+
6.3938451376440355,
|
1830 |
+
-1.8295756887681591,
|
1831 |
+
-4.325666783707902,
|
1832 |
+
4.933776860742455,
|
1833 |
+
7.027712806164146,
|
1834 |
+
-4.986483130472379,
|
1835 |
+
5.896239262631809,
|
1836 |
+
-5.3526516357399885,
|
1837 |
+
16.945257143276194,
|
1838 |
+
-10.16330949640988,
|
1839 |
+
-4.944998899610738,
|
1840 |
+
0.9205502968079884,
|
1841 |
+
2.5492987644452683,
|
1842 |
+
7.6812334267379185,
|
1843 |
+
9.22451433413886,
|
1844 |
+
-3.939135589356937,
|
1845 |
+
-0.12621848703417982,
|
1846 |
+
0.8607821050434552,
|
1847 |
+
-17.2004360249843,
|
1848 |
+
-7.725564224913484,
|
1849 |
+
-5.516814147104384,
|
1850 |
+
21.364441470705543,
|
1851 |
+
-1.0625794875336965,
|
1852 |
+
11.790871781967894,
|
1853 |
+
-6.8978711263413,
|
1854 |
+
6.695076515136606,
|
1855 |
+
7.765379650379913,
|
1856 |
+
2.3199950587865033,
|
1857 |
+
-2.40502910993294,
|
1858 |
+
-11.48877789361913,
|
1859 |
+
10.79669447458474,
|
1860 |
+
16.736190534408593,
|
1861 |
+
-0.7404245436632664,
|
1862 |
+
-19.962443055120275,
|
1863 |
+
-5.122304781654179,
|
1864 |
+
-3.807795791922274,
|
1865 |
+
-2.801989236121443,
|
1866 |
+
-4.161863475942425,
|
1867 |
+
-8.911321173661918,
|
1868 |
+
-7.131878723540041,
|
1869 |
+
-4.474931923945718,
|
1870 |
+
-23.413031761022665,
|
1871 |
+
-4.2149616939771875,
|
1872 |
+
-2.9716710867565155,
|
1873 |
+
11.026545675063062,
|
1874 |
+
15.254104664253504,
|
1875 |
+
23.7142825013604,
|
1876 |
+
-4.70522614277229,
|
1877 |
+
0.01958530302596273,
|
1878 |
+
-3.3207064444839034,
|
1879 |
+
2.1613915180581387,
|
1880 |
+
0.8472323030811424,
|
1881 |
+
8.21777781178784,
|
1882 |
+
4.181389874460734,
|
1883 |
+
-22.0839071802676,
|
1884 |
+
-3.3693400826678612,
|
1885 |
+
-4.3450525751828195,
|
1886 |
+
14.386970324000288,
|
1887 |
+
24.657192016498527,
|
1888 |
+
6.996032443646584,
|
1889 |
+
9.094338914261755,
|
1890 |
+
1.567450154167318,
|
1891 |
+
-4.031945907366662,
|
1892 |
+
8.242082877409644,
|
1893 |
+
-0.6529483997401258,
|
1894 |
+
5.145992785955741,
|
1895 |
+
-6.772498617345718,
|
1896 |
+
-11.644406877619758,
|
1897 |
+
-5.328418703681336,
|
1898 |
+
5.798031620809638,
|
1899 |
+
-3.670207724448119,
|
1900 |
+
12.670803302810725,
|
1901 |
+
1.899004592682786,
|
1902 |
+
-3.9885106693641887,
|
1903 |
+
2.4537054522558037,
|
1904 |
+
-6.480207447525345,
|
1905 |
+
-1.885911533008482,
|
1906 |
+
-5.1585668701517875,
|
1907 |
+
5.069210384357689,
|
1908 |
+
-5.389074626082618,
|
1909 |
+
-4.115533130982101,
|
1910 |
+
4.048543178694501,
|
1911 |
+
0.18305617021218268,
|
1912 |
+
16.622084122662272,
|
1913 |
+
4.530722394100678,
|
1914 |
+
-0.5708764645976885,
|
1915 |
+
-1.5357322325141922,
|
1916 |
+
-12.269306120989484,
|
1917 |
+
-14.424515668193578,
|
1918 |
+
-17.55959645806837,
|
1919 |
+
-24.711198636612266,
|
1920 |
+
-22.894734481480498,
|
1921 |
+
-7.984509158554715,
|
1922 |
+
-0.7130852089628092,
|
1923 |
+
11.27592737559496,
|
1924 |
+
25.516918733725618
|
1925 |
+
],
|
1926 |
+
"xaxis": "x",
|
1927 |
+
"yaxis": "y"
|
1928 |
+
}
|
1929 |
+
],
|
1930 |
+
"layout": {
|
1931 |
+
"barmode": "relative",
|
1932 |
+
"font": {
|
1933 |
+
"size": 18
|
1934 |
+
},
|
1935 |
+
"height": 400,
|
1936 |
+
"legend": {
|
1937 |
+
"tracegroupgap": 0
|
1938 |
+
},
|
1939 |
+
"margin": {
|
1940 |
+
"t": 60
|
1941 |
+
},
|
1942 |
+
"template": {
|
1943 |
+
"data": {
|
1944 |
+
"bar": [
|
1945 |
+
{
|
1946 |
+
"error_x": {
|
1947 |
+
"color": "rgb(36,36,36)"
|
1948 |
+
},
|
1949 |
+
"error_y": {
|
1950 |
+
"color": "rgb(36,36,36)"
|
1951 |
+
},
|
1952 |
+
"marker": {
|
1953 |
+
"line": {
|
1954 |
+
"color": "white",
|
1955 |
+
"width": 0.5
|
1956 |
+
},
|
1957 |
+
"pattern": {
|
1958 |
+
"fillmode": "overlay",
|
1959 |
+
"size": 10,
|
1960 |
+
"solidity": 0.2
|
1961 |
+
}
|
1962 |
+
},
|
1963 |
+
"type": "bar"
|
1964 |
+
}
|
1965 |
+
],
|
1966 |
+
"barpolar": [
|
1967 |
+
{
|
1968 |
+
"marker": {
|
1969 |
+
"line": {
|
1970 |
+
"color": "white",
|
1971 |
+
"width": 0.5
|
1972 |
+
},
|
1973 |
+
"pattern": {
|
1974 |
+
"fillmode": "overlay",
|
1975 |
+
"size": 10,
|
1976 |
+
"solidity": 0.2
|
1977 |
+
}
|
1978 |
+
},
|
1979 |
+
"type": "barpolar"
|
1980 |
+
}
|
1981 |
+
],
|
1982 |
+
"carpet": [
|
1983 |
+
{
|
1984 |
+
"aaxis": {
|
1985 |
+
"endlinecolor": "rgb(36,36,36)",
|
1986 |
+
"gridcolor": "white",
|
1987 |
+
"linecolor": "white",
|
1988 |
+
"minorgridcolor": "white",
|
1989 |
+
"startlinecolor": "rgb(36,36,36)"
|
1990 |
+
},
|
1991 |
+
"baxis": {
|
1992 |
+
"endlinecolor": "rgb(36,36,36)",
|
1993 |
+
"gridcolor": "white",
|
1994 |
+
"linecolor": "white",
|
1995 |
+
"minorgridcolor": "white",
|
1996 |
+
"startlinecolor": "rgb(36,36,36)"
|
1997 |
+
},
|
1998 |
+
"type": "carpet"
|
1999 |
+
}
|
2000 |
+
],
|
2001 |
+
"choropleth": [
|
2002 |
+
{
|
2003 |
+
"colorbar": {
|
2004 |
+
"outlinewidth": 1,
|
2005 |
+
"tickcolor": "rgb(36,36,36)",
|
2006 |
+
"ticks": "outside"
|
2007 |
+
},
|
2008 |
+
"type": "choropleth"
|
2009 |
+
}
|
2010 |
+
],
|
2011 |
+
"contour": [
|
2012 |
+
{
|
2013 |
+
"colorbar": {
|
2014 |
+
"outlinewidth": 1,
|
2015 |
+
"tickcolor": "rgb(36,36,36)",
|
2016 |
+
"ticks": "outside"
|
2017 |
+
},
|
2018 |
+
"colorscale": [
|
2019 |
+
[
|
2020 |
+
0,
|
2021 |
+
"#440154"
|
2022 |
+
],
|
2023 |
+
[
|
2024 |
+
0.1111111111111111,
|
2025 |
+
"#482878"
|
2026 |
+
],
|
2027 |
+
[
|
2028 |
+
0.2222222222222222,
|
2029 |
+
"#3e4989"
|
2030 |
+
],
|
2031 |
+
[
|
2032 |
+
0.3333333333333333,
|
2033 |
+
"#31688e"
|
2034 |
+
],
|
2035 |
+
[
|
2036 |
+
0.4444444444444444,
|
2037 |
+
"#26828e"
|
2038 |
+
],
|
2039 |
+
[
|
2040 |
+
0.5555555555555556,
|
2041 |
+
"#1f9e89"
|
2042 |
+
],
|
2043 |
+
[
|
2044 |
+
0.6666666666666666,
|
2045 |
+
"#35b779"
|
2046 |
+
],
|
2047 |
+
[
|
2048 |
+
0.7777777777777778,
|
2049 |
+
"#6ece58"
|
2050 |
+
],
|
2051 |
+
[
|
2052 |
+
0.8888888888888888,
|
2053 |
+
"#b5de2b"
|
2054 |
+
],
|
2055 |
+
[
|
2056 |
+
1,
|
2057 |
+
"#fde725"
|
2058 |
+
]
|
2059 |
+
],
|
2060 |
+
"type": "contour"
|
2061 |
+
}
|
2062 |
+
],
|
2063 |
+
"contourcarpet": [
|
2064 |
+
{
|
2065 |
+
"colorbar": {
|
2066 |
+
"outlinewidth": 1,
|
2067 |
+
"tickcolor": "rgb(36,36,36)",
|
2068 |
+
"ticks": "outside"
|
2069 |
+
},
|
2070 |
+
"type": "contourcarpet"
|
2071 |
+
}
|
2072 |
+
],
|
2073 |
+
"heatmap": [
|
2074 |
+
{
|
2075 |
+
"colorbar": {
|
2076 |
+
"outlinewidth": 1,
|
2077 |
+
"tickcolor": "rgb(36,36,36)",
|
2078 |
+
"ticks": "outside"
|
2079 |
+
},
|
2080 |
+
"colorscale": [
|
2081 |
+
[
|
2082 |
+
0,
|
2083 |
+
"#440154"
|
2084 |
+
],
|
2085 |
+
[
|
2086 |
+
0.1111111111111111,
|
2087 |
+
"#482878"
|
2088 |
+
],
|
2089 |
+
[
|
2090 |
+
0.2222222222222222,
|
2091 |
+
"#3e4989"
|
2092 |
+
],
|
2093 |
+
[
|
2094 |
+
0.3333333333333333,
|
2095 |
+
"#31688e"
|
2096 |
+
],
|
2097 |
+
[
|
2098 |
+
0.4444444444444444,
|
2099 |
+
"#26828e"
|
2100 |
+
],
|
2101 |
+
[
|
2102 |
+
0.5555555555555556,
|
2103 |
+
"#1f9e89"
|
2104 |
+
],
|
2105 |
+
[
|
2106 |
+
0.6666666666666666,
|
2107 |
+
"#35b779"
|
2108 |
+
],
|
2109 |
+
[
|
2110 |
+
0.7777777777777778,
|
2111 |
+
"#6ece58"
|
2112 |
+
],
|
2113 |
+
[
|
2114 |
+
0.8888888888888888,
|
2115 |
+
"#b5de2b"
|
2116 |
+
],
|
2117 |
+
[
|
2118 |
+
1,
|
2119 |
+
"#fde725"
|
2120 |
+
]
|
2121 |
+
],
|
2122 |
+
"type": "heatmap"
|
2123 |
+
}
|
2124 |
+
],
|
2125 |
+
"heatmapgl": [
|
2126 |
+
{
|
2127 |
+
"colorbar": {
|
2128 |
+
"outlinewidth": 1,
|
2129 |
+
"tickcolor": "rgb(36,36,36)",
|
2130 |
+
"ticks": "outside"
|
2131 |
+
},
|
2132 |
+
"colorscale": [
|
2133 |
+
[
|
2134 |
+
0,
|
2135 |
+
"#440154"
|
2136 |
+
],
|
2137 |
+
[
|
2138 |
+
0.1111111111111111,
|
2139 |
+
"#482878"
|
2140 |
+
],
|
2141 |
+
[
|
2142 |
+
0.2222222222222222,
|
2143 |
+
"#3e4989"
|
2144 |
+
],
|
2145 |
+
[
|
2146 |
+
0.3333333333333333,
|
2147 |
+
"#31688e"
|
2148 |
+
],
|
2149 |
+
[
|
2150 |
+
0.4444444444444444,
|
2151 |
+
"#26828e"
|
2152 |
+
],
|
2153 |
+
[
|
2154 |
+
0.5555555555555556,
|
2155 |
+
"#1f9e89"
|
2156 |
+
],
|
2157 |
+
[
|
2158 |
+
0.6666666666666666,
|
2159 |
+
"#35b779"
|
2160 |
+
],
|
2161 |
+
[
|
2162 |
+
0.7777777777777778,
|
2163 |
+
"#6ece58"
|
2164 |
+
],
|
2165 |
+
[
|
2166 |
+
0.8888888888888888,
|
2167 |
+
"#b5de2b"
|
2168 |
+
],
|
2169 |
+
[
|
2170 |
+
1,
|
2171 |
+
"#fde725"
|
2172 |
+
]
|
2173 |
+
],
|
2174 |
+
"type": "heatmapgl"
|
2175 |
+
}
|
2176 |
+
],
|
2177 |
+
"histogram": [
|
2178 |
+
{
|
2179 |
+
"marker": {
|
2180 |
+
"line": {
|
2181 |
+
"color": "white",
|
2182 |
+
"width": 0.6
|
2183 |
+
}
|
2184 |
+
},
|
2185 |
+
"type": "histogram"
|
2186 |
+
}
|
2187 |
+
],
|
2188 |
+
"histogram2d": [
|
2189 |
+
{
|
2190 |
+
"colorbar": {
|
2191 |
+
"outlinewidth": 1,
|
2192 |
+
"tickcolor": "rgb(36,36,36)",
|
2193 |
+
"ticks": "outside"
|
2194 |
+
},
|
2195 |
+
"colorscale": [
|
2196 |
+
[
|
2197 |
+
0,
|
2198 |
+
"#440154"
|
2199 |
+
],
|
2200 |
+
[
|
2201 |
+
0.1111111111111111,
|
2202 |
+
"#482878"
|
2203 |
+
],
|
2204 |
+
[
|
2205 |
+
0.2222222222222222,
|
2206 |
+
"#3e4989"
|
2207 |
+
],
|
2208 |
+
[
|
2209 |
+
0.3333333333333333,
|
2210 |
+
"#31688e"
|
2211 |
+
],
|
2212 |
+
[
|
2213 |
+
0.4444444444444444,
|
2214 |
+
"#26828e"
|
2215 |
+
],
|
2216 |
+
[
|
2217 |
+
0.5555555555555556,
|
2218 |
+
"#1f9e89"
|
2219 |
+
],
|
2220 |
+
[
|
2221 |
+
0.6666666666666666,
|
2222 |
+
"#35b779"
|
2223 |
+
],
|
2224 |
+
[
|
2225 |
+
0.7777777777777778,
|
2226 |
+
"#6ece58"
|
2227 |
+
],
|
2228 |
+
[
|
2229 |
+
0.8888888888888888,
|
2230 |
+
"#b5de2b"
|
2231 |
+
],
|
2232 |
+
[
|
2233 |
+
1,
|
2234 |
+
"#fde725"
|
2235 |
+
]
|
2236 |
+
],
|
2237 |
+
"type": "histogram2d"
|
2238 |
+
}
|
2239 |
+
],
|
2240 |
+
"histogram2dcontour": [
|
2241 |
+
{
|
2242 |
+
"colorbar": {
|
2243 |
+
"outlinewidth": 1,
|
2244 |
+
"tickcolor": "rgb(36,36,36)",
|
2245 |
+
"ticks": "outside"
|
2246 |
+
},
|
2247 |
+
"colorscale": [
|
2248 |
+
[
|
2249 |
+
0,
|
2250 |
+
"#440154"
|
2251 |
+
],
|
2252 |
+
[
|
2253 |
+
0.1111111111111111,
|
2254 |
+
"#482878"
|
2255 |
+
],
|
2256 |
+
[
|
2257 |
+
0.2222222222222222,
|
2258 |
+
"#3e4989"
|
2259 |
+
],
|
2260 |
+
[
|
2261 |
+
0.3333333333333333,
|
2262 |
+
"#31688e"
|
2263 |
+
],
|
2264 |
+
[
|
2265 |
+
0.4444444444444444,
|
2266 |
+
"#26828e"
|
2267 |
+
],
|
2268 |
+
[
|
2269 |
+
0.5555555555555556,
|
2270 |
+
"#1f9e89"
|
2271 |
+
],
|
2272 |
+
[
|
2273 |
+
0.6666666666666666,
|
2274 |
+
"#35b779"
|
2275 |
+
],
|
2276 |
+
[
|
2277 |
+
0.7777777777777778,
|
2278 |
+
"#6ece58"
|
2279 |
+
],
|
2280 |
+
[
|
2281 |
+
0.8888888888888888,
|
2282 |
+
"#b5de2b"
|
2283 |
+
],
|
2284 |
+
[
|
2285 |
+
1,
|
2286 |
+
"#fde725"
|
2287 |
+
]
|
2288 |
+
],
|
2289 |
+
"type": "histogram2dcontour"
|
2290 |
+
}
|
2291 |
+
],
|
2292 |
+
"mesh3d": [
|
2293 |
+
{
|
2294 |
+
"colorbar": {
|
2295 |
+
"outlinewidth": 1,
|
2296 |
+
"tickcolor": "rgb(36,36,36)",
|
2297 |
+
"ticks": "outside"
|
2298 |
+
},
|
2299 |
+
"type": "mesh3d"
|
2300 |
+
}
|
2301 |
+
],
|
2302 |
+
"parcoords": [
|
2303 |
+
{
|
2304 |
+
"line": {
|
2305 |
+
"colorbar": {
|
2306 |
+
"outlinewidth": 1,
|
2307 |
+
"tickcolor": "rgb(36,36,36)",
|
2308 |
+
"ticks": "outside"
|
2309 |
+
}
|
2310 |
+
},
|
2311 |
+
"type": "parcoords"
|
2312 |
+
}
|
2313 |
+
],
|
2314 |
+
"pie": [
|
2315 |
+
{
|
2316 |
+
"automargin": true,
|
2317 |
+
"type": "pie"
|
2318 |
+
}
|
2319 |
+
],
|
2320 |
+
"scatter": [
|
2321 |
+
{
|
2322 |
+
"fillpattern": {
|
2323 |
+
"fillmode": "overlay",
|
2324 |
+
"size": 10,
|
2325 |
+
"solidity": 0.2
|
2326 |
+
},
|
2327 |
+
"type": "scatter"
|
2328 |
+
}
|
2329 |
+
],
|
2330 |
+
"scatter3d": [
|
2331 |
+
{
|
2332 |
+
"line": {
|
2333 |
+
"colorbar": {
|
2334 |
+
"outlinewidth": 1,
|
2335 |
+
"tickcolor": "rgb(36,36,36)",
|
2336 |
+
"ticks": "outside"
|
2337 |
+
}
|
2338 |
+
},
|
2339 |
+
"marker": {
|
2340 |
+
"colorbar": {
|
2341 |
+
"outlinewidth": 1,
|
2342 |
+
"tickcolor": "rgb(36,36,36)",
|
2343 |
+
"ticks": "outside"
|
2344 |
+
}
|
2345 |
+
},
|
2346 |
+
"type": "scatter3d"
|
2347 |
+
}
|
2348 |
+
],
|
2349 |
+
"scattercarpet": [
|
2350 |
+
{
|
2351 |
+
"marker": {
|
2352 |
+
"colorbar": {
|
2353 |
+
"outlinewidth": 1,
|
2354 |
+
"tickcolor": "rgb(36,36,36)",
|
2355 |
+
"ticks": "outside"
|
2356 |
+
}
|
2357 |
+
},
|
2358 |
+
"type": "scattercarpet"
|
2359 |
+
}
|
2360 |
+
],
|
2361 |
+
"scattergeo": [
|
2362 |
+
{
|
2363 |
+
"marker": {
|
2364 |
+
"colorbar": {
|
2365 |
+
"outlinewidth": 1,
|
2366 |
+
"tickcolor": "rgb(36,36,36)",
|
2367 |
+
"ticks": "outside"
|
2368 |
+
}
|
2369 |
+
},
|
2370 |
+
"type": "scattergeo"
|
2371 |
+
}
|
2372 |
+
],
|
2373 |
+
"scattergl": [
|
2374 |
+
{
|
2375 |
+
"marker": {
|
2376 |
+
"colorbar": {
|
2377 |
+
"outlinewidth": 1,
|
2378 |
+
"tickcolor": "rgb(36,36,36)",
|
2379 |
+
"ticks": "outside"
|
2380 |
+
}
|
2381 |
+
},
|
2382 |
+
"type": "scattergl"
|
2383 |
+
}
|
2384 |
+
],
|
2385 |
+
"scattermapbox": [
|
2386 |
+
{
|
2387 |
+
"marker": {
|
2388 |
+
"colorbar": {
|
2389 |
+
"outlinewidth": 1,
|
2390 |
+
"tickcolor": "rgb(36,36,36)",
|
2391 |
+
"ticks": "outside"
|
2392 |
+
}
|
2393 |
+
},
|
2394 |
+
"type": "scattermapbox"
|
2395 |
+
}
|
2396 |
+
],
|
2397 |
+
"scatterpolar": [
|
2398 |
+
{
|
2399 |
+
"marker": {
|
2400 |
+
"colorbar": {
|
2401 |
+
"outlinewidth": 1,
|
2402 |
+
"tickcolor": "rgb(36,36,36)",
|
2403 |
+
"ticks": "outside"
|
2404 |
+
}
|
2405 |
+
},
|
2406 |
+
"type": "scatterpolar"
|
2407 |
+
}
|
2408 |
+
],
|
2409 |
+
"scatterpolargl": [
|
2410 |
+
{
|
2411 |
+
"marker": {
|
2412 |
+
"colorbar": {
|
2413 |
+
"outlinewidth": 1,
|
2414 |
+
"tickcolor": "rgb(36,36,36)",
|
2415 |
+
"ticks": "outside"
|
2416 |
+
}
|
2417 |
+
},
|
2418 |
+
"type": "scatterpolargl"
|
2419 |
+
}
|
2420 |
+
],
|
2421 |
+
"scatterternary": [
|
2422 |
+
{
|
2423 |
+
"marker": {
|
2424 |
+
"colorbar": {
|
2425 |
+
"outlinewidth": 1,
|
2426 |
+
"tickcolor": "rgb(36,36,36)",
|
2427 |
+
"ticks": "outside"
|
2428 |
+
}
|
2429 |
+
},
|
2430 |
+
"type": "scatterternary"
|
2431 |
+
}
|
2432 |
+
],
|
2433 |
+
"surface": [
|
2434 |
+
{
|
2435 |
+
"colorbar": {
|
2436 |
+
"outlinewidth": 1,
|
2437 |
+
"tickcolor": "rgb(36,36,36)",
|
2438 |
+
"ticks": "outside"
|
2439 |
+
},
|
2440 |
+
"colorscale": [
|
2441 |
+
[
|
2442 |
+
0,
|
2443 |
+
"#440154"
|
2444 |
+
],
|
2445 |
+
[
|
2446 |
+
0.1111111111111111,
|
2447 |
+
"#482878"
|
2448 |
+
],
|
2449 |
+
[
|
2450 |
+
0.2222222222222222,
|
2451 |
+
"#3e4989"
|
2452 |
+
],
|
2453 |
+
[
|
2454 |
+
0.3333333333333333,
|
2455 |
+
"#31688e"
|
2456 |
+
],
|
2457 |
+
[
|
2458 |
+
0.4444444444444444,
|
2459 |
+
"#26828e"
|
2460 |
+
],
|
2461 |
+
[
|
2462 |
+
0.5555555555555556,
|
2463 |
+
"#1f9e89"
|
2464 |
+
],
|
2465 |
+
[
|
2466 |
+
0.6666666666666666,
|
2467 |
+
"#35b779"
|
2468 |
+
],
|
2469 |
+
[
|
2470 |
+
0.7777777777777778,
|
2471 |
+
"#6ece58"
|
2472 |
+
],
|
2473 |
+
[
|
2474 |
+
0.8888888888888888,
|
2475 |
+
"#b5de2b"
|
2476 |
+
],
|
2477 |
+
[
|
2478 |
+
1,
|
2479 |
+
"#fde725"
|
2480 |
+
]
|
2481 |
+
],
|
2482 |
+
"type": "surface"
|
2483 |
+
}
|
2484 |
+
],
|
2485 |
+
"table": [
|
2486 |
+
{
|
2487 |
+
"cells": {
|
2488 |
+
"fill": {
|
2489 |
+
"color": "rgb(237,237,237)"
|
2490 |
+
},
|
2491 |
+
"line": {
|
2492 |
+
"color": "white"
|
2493 |
+
}
|
2494 |
+
},
|
2495 |
+
"header": {
|
2496 |
+
"fill": {
|
2497 |
+
"color": "rgb(217,217,217)"
|
2498 |
+
},
|
2499 |
+
"line": {
|
2500 |
+
"color": "white"
|
2501 |
+
}
|
2502 |
+
},
|
2503 |
+
"type": "table"
|
2504 |
+
}
|
2505 |
+
]
|
2506 |
+
},
|
2507 |
+
"layout": {
|
2508 |
+
"annotationdefaults": {
|
2509 |
+
"arrowhead": 0,
|
2510 |
+
"arrowwidth": 1
|
2511 |
+
},
|
2512 |
+
"autotypenumbers": "strict",
|
2513 |
+
"coloraxis": {
|
2514 |
+
"colorbar": {
|
2515 |
+
"outlinewidth": 1,
|
2516 |
+
"tickcolor": "rgb(36,36,36)",
|
2517 |
+
"ticks": "outside"
|
2518 |
+
}
|
2519 |
+
},
|
2520 |
+
"colorscale": {
|
2521 |
+
"diverging": [
|
2522 |
+
[
|
2523 |
+
0,
|
2524 |
+
"rgb(103,0,31)"
|
2525 |
+
],
|
2526 |
+
[
|
2527 |
+
0.1,
|
2528 |
+
"rgb(178,24,43)"
|
2529 |
+
],
|
2530 |
+
[
|
2531 |
+
0.2,
|
2532 |
+
"rgb(214,96,77)"
|
2533 |
+
],
|
2534 |
+
[
|
2535 |
+
0.3,
|
2536 |
+
"rgb(244,165,130)"
|
2537 |
+
],
|
2538 |
+
[
|
2539 |
+
0.4,
|
2540 |
+
"rgb(253,219,199)"
|
2541 |
+
],
|
2542 |
+
[
|
2543 |
+
0.5,
|
2544 |
+
"rgb(247,247,247)"
|
2545 |
+
],
|
2546 |
+
[
|
2547 |
+
0.6,
|
2548 |
+
"rgb(209,229,240)"
|
2549 |
+
],
|
2550 |
+
[
|
2551 |
+
0.7,
|
2552 |
+
"rgb(146,197,222)"
|
2553 |
+
],
|
2554 |
+
[
|
2555 |
+
0.8,
|
2556 |
+
"rgb(67,147,195)"
|
2557 |
+
],
|
2558 |
+
[
|
2559 |
+
0.9,
|
2560 |
+
"rgb(33,102,172)"
|
2561 |
+
],
|
2562 |
+
[
|
2563 |
+
1,
|
2564 |
+
"rgb(5,48,97)"
|
2565 |
+
]
|
2566 |
+
],
|
2567 |
+
"sequential": [
|
2568 |
+
[
|
2569 |
+
0,
|
2570 |
+
"#440154"
|
2571 |
+
],
|
2572 |
+
[
|
2573 |
+
0.1111111111111111,
|
2574 |
+
"#482878"
|
2575 |
+
],
|
2576 |
+
[
|
2577 |
+
0.2222222222222222,
|
2578 |
+
"#3e4989"
|
2579 |
+
],
|
2580 |
+
[
|
2581 |
+
0.3333333333333333,
|
2582 |
+
"#31688e"
|
2583 |
+
],
|
2584 |
+
[
|
2585 |
+
0.4444444444444444,
|
2586 |
+
"#26828e"
|
2587 |
+
],
|
2588 |
+
[
|
2589 |
+
0.5555555555555556,
|
2590 |
+
"#1f9e89"
|
2591 |
+
],
|
2592 |
+
[
|
2593 |
+
0.6666666666666666,
|
2594 |
+
"#35b779"
|
2595 |
+
],
|
2596 |
+
[
|
2597 |
+
0.7777777777777778,
|
2598 |
+
"#6ece58"
|
2599 |
+
],
|
2600 |
+
[
|
2601 |
+
0.8888888888888888,
|
2602 |
+
"#b5de2b"
|
2603 |
+
],
|
2604 |
+
[
|
2605 |
+
1,
|
2606 |
+
"#fde725"
|
2607 |
+
]
|
2608 |
+
],
|
2609 |
+
"sequentialminus": [
|
2610 |
+
[
|
2611 |
+
0,
|
2612 |
+
"#440154"
|
2613 |
+
],
|
2614 |
+
[
|
2615 |
+
0.1111111111111111,
|
2616 |
+
"#482878"
|
2617 |
+
],
|
2618 |
+
[
|
2619 |
+
0.2222222222222222,
|
2620 |
+
"#3e4989"
|
2621 |
+
],
|
2622 |
+
[
|
2623 |
+
0.3333333333333333,
|
2624 |
+
"#31688e"
|
2625 |
+
],
|
2626 |
+
[
|
2627 |
+
0.4444444444444444,
|
2628 |
+
"#26828e"
|
2629 |
+
],
|
2630 |
+
[
|
2631 |
+
0.5555555555555556,
|
2632 |
+
"#1f9e89"
|
2633 |
+
],
|
2634 |
+
[
|
2635 |
+
0.6666666666666666,
|
2636 |
+
"#35b779"
|
2637 |
+
],
|
2638 |
+
[
|
2639 |
+
0.7777777777777778,
|
2640 |
+
"#6ece58"
|
2641 |
+
],
|
2642 |
+
[
|
2643 |
+
0.8888888888888888,
|
2644 |
+
"#b5de2b"
|
2645 |
+
],
|
2646 |
+
[
|
2647 |
+
1,
|
2648 |
+
"#fde725"
|
2649 |
+
]
|
2650 |
+
]
|
2651 |
+
},
|
2652 |
+
"colorway": [
|
2653 |
+
"#1F77B4",
|
2654 |
+
"#FF7F0E",
|
2655 |
+
"#2CA02C",
|
2656 |
+
"#D62728",
|
2657 |
+
"#9467BD",
|
2658 |
+
"#8C564B",
|
2659 |
+
"#E377C2",
|
2660 |
+
"#7F7F7F",
|
2661 |
+
"#BCBD22",
|
2662 |
+
"#17BECF"
|
2663 |
+
],
|
2664 |
+
"font": {
|
2665 |
+
"color": "rgb(36,36,36)"
|
2666 |
+
},
|
2667 |
+
"geo": {
|
2668 |
+
"bgcolor": "white",
|
2669 |
+
"lakecolor": "white",
|
2670 |
+
"landcolor": "white",
|
2671 |
+
"showlakes": true,
|
2672 |
+
"showland": true,
|
2673 |
+
"subunitcolor": "white"
|
2674 |
+
},
|
2675 |
+
"hoverlabel": {
|
2676 |
+
"align": "left"
|
2677 |
+
},
|
2678 |
+
"hovermode": "closest",
|
2679 |
+
"mapbox": {
|
2680 |
+
"style": "light"
|
2681 |
+
},
|
2682 |
+
"paper_bgcolor": "white",
|
2683 |
+
"plot_bgcolor": "white",
|
2684 |
+
"polar": {
|
2685 |
+
"angularaxis": {
|
2686 |
+
"gridcolor": "rgb(232,232,232)",
|
2687 |
+
"linecolor": "rgb(36,36,36)",
|
2688 |
+
"showgrid": false,
|
2689 |
+
"showline": true,
|
2690 |
+
"ticks": "outside"
|
2691 |
+
},
|
2692 |
+
"bgcolor": "white",
|
2693 |
+
"radialaxis": {
|
2694 |
+
"gridcolor": "rgb(232,232,232)",
|
2695 |
+
"linecolor": "rgb(36,36,36)",
|
2696 |
+
"showgrid": false,
|
2697 |
+
"showline": true,
|
2698 |
+
"ticks": "outside"
|
2699 |
+
}
|
2700 |
+
},
|
2701 |
+
"scene": {
|
2702 |
+
"xaxis": {
|
2703 |
+
"backgroundcolor": "white",
|
2704 |
+
"gridcolor": "rgb(232,232,232)",
|
2705 |
+
"gridwidth": 2,
|
2706 |
+
"linecolor": "rgb(36,36,36)",
|
2707 |
+
"showbackground": true,
|
2708 |
+
"showgrid": false,
|
2709 |
+
"showline": true,
|
2710 |
+
"ticks": "outside",
|
2711 |
+
"zeroline": false,
|
2712 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2713 |
+
},
|
2714 |
+
"yaxis": {
|
2715 |
+
"backgroundcolor": "white",
|
2716 |
+
"gridcolor": "rgb(232,232,232)",
|
2717 |
+
"gridwidth": 2,
|
2718 |
+
"linecolor": "rgb(36,36,36)",
|
2719 |
+
"showbackground": true,
|
2720 |
+
"showgrid": false,
|
2721 |
+
"showline": true,
|
2722 |
+
"ticks": "outside",
|
2723 |
+
"zeroline": false,
|
2724 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2725 |
+
},
|
2726 |
+
"zaxis": {
|
2727 |
+
"backgroundcolor": "white",
|
2728 |
+
"gridcolor": "rgb(232,232,232)",
|
2729 |
+
"gridwidth": 2,
|
2730 |
+
"linecolor": "rgb(36,36,36)",
|
2731 |
+
"showbackground": true,
|
2732 |
+
"showgrid": false,
|
2733 |
+
"showline": true,
|
2734 |
+
"ticks": "outside",
|
2735 |
+
"zeroline": false,
|
2736 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2737 |
+
}
|
2738 |
+
},
|
2739 |
+
"shapedefaults": {
|
2740 |
+
"fillcolor": "black",
|
2741 |
+
"line": {
|
2742 |
+
"width": 0
|
2743 |
+
},
|
2744 |
+
"opacity": 0.3
|
2745 |
+
},
|
2746 |
+
"ternary": {
|
2747 |
+
"aaxis": {
|
2748 |
+
"gridcolor": "rgb(232,232,232)",
|
2749 |
+
"linecolor": "rgb(36,36,36)",
|
2750 |
+
"showgrid": false,
|
2751 |
+
"showline": true,
|
2752 |
+
"ticks": "outside"
|
2753 |
+
},
|
2754 |
+
"baxis": {
|
2755 |
+
"gridcolor": "rgb(232,232,232)",
|
2756 |
+
"linecolor": "rgb(36,36,36)",
|
2757 |
+
"showgrid": false,
|
2758 |
+
"showline": true,
|
2759 |
+
"ticks": "outside"
|
2760 |
+
},
|
2761 |
+
"bgcolor": "white",
|
2762 |
+
"caxis": {
|
2763 |
+
"gridcolor": "rgb(232,232,232)",
|
2764 |
+
"linecolor": "rgb(36,36,36)",
|
2765 |
+
"showgrid": false,
|
2766 |
+
"showline": true,
|
2767 |
+
"ticks": "outside"
|
2768 |
+
}
|
2769 |
+
},
|
2770 |
+
"title": {
|
2771 |
+
"x": 0.05
|
2772 |
+
},
|
2773 |
+
"xaxis": {
|
2774 |
+
"automargin": true,
|
2775 |
+
"gridcolor": "rgb(232,232,232)",
|
2776 |
+
"linecolor": "rgb(36,36,36)",
|
2777 |
+
"showgrid": false,
|
2778 |
+
"showline": true,
|
2779 |
+
"ticks": "outside",
|
2780 |
+
"title": {
|
2781 |
+
"standoff": 15
|
2782 |
+
},
|
2783 |
+
"zeroline": false,
|
2784 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2785 |
+
},
|
2786 |
+
"yaxis": {
|
2787 |
+
"automargin": true,
|
2788 |
+
"gridcolor": "rgb(232,232,232)",
|
2789 |
+
"linecolor": "rgb(36,36,36)",
|
2790 |
+
"showgrid": false,
|
2791 |
+
"showline": true,
|
2792 |
+
"ticks": "outside",
|
2793 |
+
"title": {
|
2794 |
+
"standoff": 15
|
2795 |
+
},
|
2796 |
+
"zeroline": false,
|
2797 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2798 |
+
}
|
2799 |
+
}
|
2800 |
+
},
|
2801 |
+
"title": {
|
2802 |
+
"text": "Distribution of Residuals",
|
2803 |
+
"x": 0.5
|
2804 |
+
},
|
2805 |
+
"width": 700,
|
2806 |
+
"xaxis": {
|
2807 |
+
"anchor": "y",
|
2808 |
+
"domain": [
|
2809 |
+
0,
|
2810 |
+
1
|
2811 |
+
],
|
2812 |
+
"title": {
|
2813 |
+
"text": "Residuals"
|
2814 |
+
}
|
2815 |
+
},
|
2816 |
+
"yaxis": {
|
2817 |
+
"anchor": "x",
|
2818 |
+
"domain": [
|
2819 |
+
0,
|
2820 |
+
1
|
2821 |
+
],
|
2822 |
+
"title": {
|
2823 |
+
"text": "Count"
|
2824 |
+
}
|
2825 |
+
}
|
2826 |
+
}
|
2827 |
+
}
|
2828 |
+
},
|
2829 |
+
"metadata": {},
|
2830 |
+
"output_type": "display_data"
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"name": "stdout",
|
2834 |
+
"output_type": "stream",
|
2835 |
+
"text": [
|
2836 |
+
"-0.023048689329401923\n"
|
2837 |
+
]
|
2838 |
+
}
|
2839 |
+
],
|
2840 |
+
"source": [
|
2841 |
+
"# Import plotly\n",
|
2842 |
+
"import plotly.graph_objects as go\n",
|
2843 |
+
"\n",
|
2844 |
+
"# Plot histogram of the residuals\n",
|
2845 |
+
"fig = px.histogram(train, x=\"residuals\")\n",
|
2846 |
+
"fig.update_layout(\n",
|
2847 |
+
" template=\"simple_white\",\n",
|
2848 |
+
" font=dict(size=18),\n",
|
2849 |
+
" title_text=\"Distribution of Residuals\",\n",
|
2850 |
+
" width=700,\n",
|
2851 |
+
" title_x=0.5,\n",
|
2852 |
+
" height=400,\n",
|
2853 |
+
" xaxis_title=\"Residuals\",\n",
|
2854 |
+
" yaxis_title=\"Count\",\n",
|
2855 |
+
")\n",
|
2856 |
+
"fig.show()\n",
|
2857 |
+
"\n",
|
2858 |
+
"# Mean of residuals\n",
|
2859 |
+
"print(train[\"residuals\"].mean())"
|
2860 |
+
]
|
2861 |
+
},
|
2862 |
+
{
|
2863 |
+
"cell_type": "code",
|
2864 |
+
"execution_count": null,
|
2865 |
+
"metadata": {},
|
2866 |
+
"outputs": [],
|
2867 |
+
"source": []
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"cell_type": "code",
|
2871 |
+
"execution_count": null,
|
2872 |
+
"metadata": {},
|
2873 |
+
"outputs": [],
|
2874 |
+
"source": []
|
2875 |
+
}
|
2876 |
+
],
|
2877 |
+
"metadata": {
|
2878 |
+
"kernelspec": {
|
2879 |
+
"display_name": "py311-kfp240-airflow251",
|
2880 |
+
"language": "python",
|
2881 |
+
"name": "python3"
|
2882 |
+
},
|
2883 |
+
"language_info": {
|
2884 |
+
"codemirror_mode": {
|
2885 |
+
"name": "ipython",
|
2886 |
+
"version": 3
|
2887 |
+
},
|
2888 |
+
"file_extension": ".py",
|
2889 |
+
"mimetype": "text/x-python",
|
2890 |
+
"name": "python",
|
2891 |
+
"nbconvert_exporter": "python",
|
2892 |
+
"pygments_lexer": "ipython3",
|
2893 |
+
"version": "3.11.5"
|
2894 |
+
}
|
2895 |
+
},
|
2896 |
+
"nbformat": 4,
|
2897 |
+
"nbformat_minor": 2
|
2898 |
+
}
|
stationary.ipynb
CHANGED
@@ -9467,7 +9467,7 @@
|
|
9467 |
"name": "python",
|
9468 |
"nbconvert_exporter": "python",
|
9469 |
"pygments_lexer": "ipython3",
|
9470 |
-
"version": "3.
|
9471 |
}
|
9472 |
},
|
9473 |
"nbformat": 4,
|
|
|
9467 |
"name": "python",
|
9468 |
"nbconvert_exporter": "python",
|
9469 |
"pygments_lexer": "ipython3",
|
9470 |
+
"version": "3.11.5"
|
9471 |
}
|
9472 |
},
|
9473 |
"nbformat": 4,
|