File size: 73,418 Bytes
ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 bc7c2f9 ddb8404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "4ab58063-fa96-4514-a608-4f06f9eb0837",
"metadata": {},
"outputs": [],
"source": [
"# Import packages\n",
"import plotly.express as px\n",
"import pandas as pd\n",
"from statsmodels.graphics.tsaplots import plot_pacf\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b1607474-8b04-40ef-be6b-cff02fc5bdc9",
"metadata": {},
"outputs": [],
"source": [
"# Read in the data\n",
"data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3f7da6a9-77d0-49ba-be7f-24046f00515f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "Date=%{x}<br>Passengers=%{y}<extra></extra>",
"legendgroup": "",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
"1949-01",
"1949-02",
"1949-03",
"1949-04",
"1949-05",
"1949-06",
"1949-07",
"1949-08",
"1949-09",
"1949-10",
"1949-11",
"1949-12",
"1950-01",
"1950-02",
"1950-03",
"1950-04",
"1950-05",
"1950-06",
"1950-07",
"1950-08",
"1950-09",
"1950-10",
"1950-11",
"1950-12",
"1951-01",
"1951-02",
"1951-03",
"1951-04",
"1951-05",
"1951-06",
"1951-07",
"1951-08",
"1951-09",
"1951-10",
"1951-11",
"1951-12",
"1952-01",
"1952-02",
"1952-03",
"1952-04",
"1952-05",
"1952-06",
"1952-07",
"1952-08",
"1952-09",
"1952-10",
"1952-11",
"1952-12",
"1953-01",
"1953-02",
"1953-03",
"1953-04",
"1953-05",
"1953-06",
"1953-07",
"1953-08",
"1953-09",
"1953-10",
"1953-11",
"1953-12",
"1954-01",
"1954-02",
"1954-03",
"1954-04",
"1954-05",
"1954-06",
"1954-07",
"1954-08",
"1954-09",
"1954-10",
"1954-11",
"1954-12",
"1955-01",
"1955-02",
"1955-03",
"1955-04",
"1955-05",
"1955-06",
"1955-07",
"1955-08",
"1955-09",
"1955-10",
"1955-11",
"1955-12",
"1956-01",
"1956-02",
"1956-03",
"1956-04",
"1956-05",
"1956-06",
"1956-07",
"1956-08",
"1956-09",
"1956-10",
"1956-11",
"1956-12",
"1957-01",
"1957-02",
"1957-03",
"1957-04",
"1957-05",
"1957-06",
"1957-07",
"1957-08",
"1957-09",
"1957-10",
"1957-11",
"1957-12",
"1958-01",
"1958-02",
"1958-03",
"1958-04",
"1958-05",
"1958-06",
"1958-07",
"1958-08",
"1958-09",
"1958-10",
"1958-11",
"1958-12",
"1959-01",
"1959-02",
"1959-03",
"1959-04",
"1959-05",
"1959-06",
"1959-07",
"1959-08",
"1959-09",
"1959-10",
"1959-11",
"1959-12",
"1960-01",
"1960-02",
"1960-03",
"1960-04",
"1960-05",
"1960-06",
"1960-07",
"1960-08",
"1960-09",
"1960-10",
"1960-11",
"1960-12"
],
"xaxis": "x",
"y": [
112,
118,
132,
129,
121,
135,
148,
148,
136,
119,
104,
118,
115,
126,
141,
135,
125,
149,
170,
170,
158,
133,
114,
140,
145,
150,
178,
163,
172,
178,
199,
199,
184,
162,
146,
166,
171,
180,
193,
181,
183,
218,
230,
242,
209,
191,
172,
194,
196,
196,
236,
235,
229,
243,
264,
272,
237,
211,
180,
201,
204,
188,
235,
227,
234,
264,
302,
293,
259,
229,
203,
229,
242,
233,
267,
269,
270,
315,
364,
347,
312,
274,
237,
278,
284,
277,
317,
313,
318,
374,
413,
405,
355,
306,
271,
306,
315,
301,
356,
348,
355,
422,
465,
467,
404,
347,
305,
336,
340,
318,
362,
348,
363,
435,
491,
505,
404,
359,
310,
337,
360,
342,
406,
396,
420,
472,
548,
559,
463,
407,
362,
405,
417,
391,
419,
461,
472,
535,
622,
606,
508,
461,
390,
432
],
"yaxis": "y"
}
],
"layout": {
"font": {
"size": 18
},
"height": 400,
"legend": {
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "rgb(36,36,36)"
},
"error_y": {
"color": "rgb(36,36,36)"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "rgb(36,36,36)",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "rgb(36,36,36)"
},
"baxis": {
"endlinecolor": "rgb(36,36,36)",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "rgb(36,36,36)"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"colorscale": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"colorscale": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"colorscale": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"line": {
"color": "white",
"width": 0.6
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"colorscale": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"colorscale": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
},
"colorscale": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "rgb(237,237,237)"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "rgb(217,217,217)"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 1,
"tickcolor": "rgb(36,36,36)",
"ticks": "outside"
}
},
"colorscale": {
"diverging": [
[
0,
"rgb(103,0,31)"
],
[
0.1,
"rgb(178,24,43)"
],
[
0.2,
"rgb(214,96,77)"
],
[
0.3,
"rgb(244,165,130)"
],
[
0.4,
"rgb(253,219,199)"
],
[
0.5,
"rgb(247,247,247)"
],
[
0.6,
"rgb(209,229,240)"
],
[
0.7,
"rgb(146,197,222)"
],
[
0.8,
"rgb(67,147,195)"
],
[
0.9,
"rgb(33,102,172)"
],
[
1,
"rgb(5,48,97)"
]
],
"sequential": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
],
"sequentialminus": [
[
0,
"#440154"
],
[
0.1111111111111111,
"#482878"
],
[
0.2222222222222222,
"#3e4989"
],
[
0.3333333333333333,
"#31688e"
],
[
0.4444444444444444,
"#26828e"
],
[
0.5555555555555556,
"#1f9e89"
],
[
0.6666666666666666,
"#35b779"
],
[
0.7777777777777778,
"#6ece58"
],
[
0.8888888888888888,
"#b5de2b"
],
[
1,
"#fde725"
]
]
},
"colorway": [
"#1F77B4",
"#FF7F0E",
"#2CA02C",
"#D62728",
"#9467BD",
"#8C564B",
"#E377C2",
"#7F7F7F",
"#BCBD22",
"#17BECF"
],
"font": {
"color": "rgb(36,36,36)"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside"
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside"
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "rgb(232,232,232)",
"gridwidth": 2,
"linecolor": "rgb(36,36,36)",
"showbackground": true,
"showgrid": false,
"showline": true,
"ticks": "outside",
"zeroline": false,
"zerolinecolor": "rgb(36,36,36)"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "rgb(232,232,232)",
"gridwidth": 2,
"linecolor": "rgb(36,36,36)",
"showbackground": true,
"showgrid": false,
"showline": true,
"ticks": "outside",
"zeroline": false,
"zerolinecolor": "rgb(36,36,36)"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "rgb(232,232,232)",
"gridwidth": 2,
"linecolor": "rgb(36,36,36)",
"showbackground": true,
"showgrid": false,
"showline": true,
"ticks": "outside",
"zeroline": false,
"zerolinecolor": "rgb(36,36,36)"
}
},
"shapedefaults": {
"fillcolor": "black",
"line": {
"width": 0
},
"opacity": 0.3
},
"ternary": {
"aaxis": {
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside"
},
"baxis": {
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside"
},
"bgcolor": "white",
"caxis": {
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside"
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside",
"title": {
"standoff": 15
},
"zeroline": false,
"zerolinecolor": "rgb(36,36,36)"
},
"yaxis": {
"automargin": true,
"gridcolor": "rgb(232,232,232)",
"linecolor": "rgb(36,36,36)",
"showgrid": false,
"showline": true,
"ticks": "outside",
"title": {
"standoff": 15
},
"zeroline": false,
"zerolinecolor": "rgb(36,36,36)"
}
}
},
"title": {
"text": "Airline Passengers",
"x": 0.5
},
"width": 650,
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"title": {
"text": "Date"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"title": {
"text": "Passengers"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the data\n",
"fig = px.line(\n",
" data,\n",
" x=\"Month\",\n",
" y=\"#Passengers\",\n",
" labels=({\"#Passengers\": \"Passengers\", \"Month\": \"Date\"}),\n",
")\n",
"\n",
"fig.update_layout(\n",
" template=\"simple_white\",\n",
" font=dict(size=18),\n",
" title_text=\"Airline Passengers\",\n",
" width=650,\n",
" title_x=0.5,\n",
" height=400,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8e5f69f9-f581-407b-badd-8df2d99e079a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAHqCAYAAADrglBeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAgklEQVR4nOzdeVyU5f7/8fewM2ziFuIGpriBZabmlprkUtmpzFzTtNTTYsdz1E6WGfZNy9LOkmWZmlqWSS5ZuUaaS2lplhupJbhgbqCAICBw//7wxxwQhm0GGZzX8/GYhzdzbZ/ZGO8P131dJsMwDAEAAAAAANzgXCo7AAAAAAAAgOuBJAgAAAAAAHAKJEEAAAAAAIBTIAkCAAAAAACcAkkQAAAAAADgFEiCAAAAAAAAp0ASBAAAAAAAOAWSIAAAAAAAwCmQBAEAAAAAAE6BJAgAABUsKipKJpNJJpOpwsbo1q2bTCaTunXrVmFjwHk50vsrPj7e8nlauHBhZYdT6TZv3mx5PjZv3lzZ4QCAwyMJAgBwCPn/I3/tzWw2q2HDhnrggQf0ySefKDs7u7LDdQppaWny8/OzvA7Tp0+v7JCAG05ISEiRv/fc3d1Vs2ZNde7cWVFRUTp16lRlhwoANwSSIAAAh3f58mUdP35cX3zxhYYMGaKOHTvq9OnTlRrTwoULLScr8fHxlRpLRVm+fLkuXbpk+fmjjz66ruNfjxk0cBx5r3VUVFRlh+IQsrOzlZiYqO3bt2vq1Klq3ry5Vq5cWSmxPPbYYzKZTAoJCamU8QHAnkiCAAAczpNPPql9+/ZZbj/88IPefvtty3/Af/rpJ/3lL3+RYRiVG2gpRUVFyTCMKhNvnsWLF0uSfH19JUm//fabfvzxx8oMCVBISIjl8/TYY49Vdjh2ExwcXOD33s8//6wVK1aob9++kqSUlBQNHDhQe/bsqeRIAaBqIwkCAHA4tWvXVnh4uOV2xx136JlnntHPP/+sxo0bS5J+/PFHffXVV5Uc6Y3r5MmT2rRpk6SrSZzAwEBJ/0uMALAvd3f3Ar/3WrdurQcffFCrV6/WP/7xD0lSVlaWXn311UqOFACqNpIgAIAqIzAwUJMmTbL8vG7dukqM5sb28ccfKzc3V25ubho2bJj69+8vSVq6dKmuXLlSydEBzmXq1Kny9vaWJG3YsEG5ubmVHBEAVF0kQQAAVUq7du0sx8eOHbMcp6Wl6bPPPtMTTzyhW2+9VQEBAXJ3d1etWrXUtWtXzZw5s8D6FkW5dk2Cb7/9Vv3791f9+vXl7u6ukJAQywKuI0aMsLQLDQ0ttKhh/l0aSlrbIisrS19++aWeeeYZtW3bVoGBgXJ3d1eNGjXUvn17RUVF6fz58+V4tsovb/2Pnj17qlatWnr00UclSYmJifr666+LbVva9VKs7fKR137q1KmW+4paOLKovs+dO6fJkyerdevWqlatmry8vBQSEqJHH31U27ZtK9Vjz8zM1Ny5c3Xvvfeqbt268vT0lI+Pj1q2bKknnnhC69evt3pp06VLl/T666+rQ4cOql69ujw9PVWvXj09/PDDJc5cunYHliNHjuiZZ55RkyZNZDabCzzmstTNk5GRodmzZ6tHjx4KCgqSh4eHateurcjISM2fP9+mBYcvXLigDz/8UEOHDlWLFi3k6+srDw8PBQUFqVevXpo7d66ysrKKbJu3MGieqVOnFnqt81/2UtrdYbKysvTuu++qe/fuqlWrliWee+65x5Lks+baNTAuXryoKVOmqGXLlvLx8VG1atV05513asmSJWV6nsrL19dXLVq0kHT1PZaUlFTmPsrz3sz73bVo0SJJV3/nFvVZBIAqxQAAwAFs2rTJkGRIMl5++WWr9X777TdLvd69e1vu79q1q+V+a7fQ0FAjNjbWat/5x3/hhRcKtW/YsGGBOIu7bdq0ydLvyy+/bLm/KMOHDy+xvxo1ahjbtm2zGnve4+/atavVOqX1008/Wcb95JNPDMMwjNzcXCM0NNSQZDz44IPFtv/www8t7ePi4qzWi4uLs9T78MMPi2xf3O3avtevX2/4+/sX2+bpp582cnJyrMa0Z88ey+Msy9iGYRg///yzERwcXGy7hx56yLh8+XKRY+d/DVetWmX4+PhYHbcsdQ3DMH755RejYcOGxcbWtm1b4/Tp0yXGVpSS+pZktG7d2vjzzz/L1Xb48OGW+tbeN/nFxcUZzZo1K7bPzp07G4mJiUW2z/tMNmzY0Pjtt9+MkJCQYt9Ttsh7/A0bNiy23h133GEZM//rlP93Uv7fO/mV972Z/3dXcTcAqErcBABAFbJv3z7LcXBwsOU4OztbERERuv/++3X77bcrODhYhmHo2LFjWrlypZYtW6a4uDg98MAD+uWXX+Tl5WV1jBUrVmjfvn2KiIjQ3//+d4WHh+vy5cv65Zdf1LZtW+3bt09ffPGFJk+eLElav359gVikq7NDSis7O1uNGjXSgw8+qHbt2qlBgwZyc3PTsWPH9M0332jBggVKTEzUgw8+qP3796t27dql7rs88tb98PPz01/+8hdJV2diDB48WNOmTdPXX3+tpKQkVa9evULGf+CBB3T77bfr3Xff1Zw5cyQVfN3z1K1b13L8yy+/qG/fvsrKypK7u7ueeeYZ3X///fLx8dGePXv0+uuvKy4uTu+88458fHw0Y8aMQv3FxsaqS5culhlDDz74oAYOHKhGjRopJydHhw8f1oYNG4rcoSMhIUE9evTQhQsXLDMXBg4cqBo1aujgwYOaNWuWfv31V61YsUKPPfaYli5davXxHz9+XEOHDpXZbNZLL72kLl26yNXVVT/99JNlkdqy1P3999/VtWtXJScny9/fX08//bTatWun+vXrKzExUatXr9b7779vWXB469atcnd3L8Ur9T85OTlq37697rvvPrVu3Vo33XSTsrKyFBcXp48//ljr1q3Tnj17NHDgwAKzpKSrl3dkZWUpIiJC0tWFkZ966qkCdfLWpCmNS5cuqUePHjp69Kikq++nkSNHKjg4WHFxcZo9e7a+++47bdu2TX379tWWLVvk6upaZF/p6enq27evEhMTNXnyZEVGRsrX11d79uzR1KlTdfLkSb3zzjvq27evevXqVYZnrGyys7P122+/SZI8PDxUo0aNUre15b351FNP6eGHH9bkyZP1xRdfKDg4WOvXr7f74wOA66qyszAAABhG6WaCXLlypcBfQxcvXmwpO3z4cLH9b9y40XBxcTEkGfPmzSuyjvL9ZbNHjx5GRkaG1f5KO9vBMEqeCfL7778bubm5Vtvv3bvX8PX1NSQZkydPLrKOvWaCZGVlGbVq1TIkGcOGDStQFhsba3kc77zzjtU+bJ0Jkqek5y2/tm3bGpIMV1dXY/369YXKk5KSjBYtWhiSDBcXF2P//v2F6tx2222W8k8//dTqWOfPnzfS09ML3Pfwww9bYi3q/ZWRkWF0797dUmfNmjWF6uSfzRQcHGwcO3bMagxlqduxY0fLTIxz584VWWft2rWWz8fcuXOtjmft/VXS52/BggWWeL/55psi65T0+c9T0vtmwoQJlvKiPi+5ubnGkCFDLHXefffdQnXyz84KCAgo8v1y5MgRw8vLy5Bk3H///cXGXJzSzASZPXu2JZ677rqrQFlJM0Hs8d7MPzMGAKo61gQBADi8tLQ0fffdd7r77ru1Y8cOSVLDhg31yCOPWOo0adKk2D4iIyN1//33S5JWrVpVbF0XFxfNmzdPnp6etgVeSjfffHOx19VHREToiSeekFRy7LZau3atzp07J0kaOnRogbJmzZrp9ttvl+RYu8T8+OOP+umnnyRJo0aNUs+ePQvVCQwM1Ny5cyVJubm5evfddwuUb9iwQT///LMk6dlnn9XAgQOtjlejRg3LIpWSdOrUKcvskN69e+vxxx8v1MbT01MLFiyQm9vVSbizZ88u9jG9/vrratCgQbF1SlN369at+v777yVJixYtUs2aNYus17t3bz388MOSVOw6G9aU9PkbMWKEbr31VkkV+x7OzMzUvHnzJEktW7a0rO+Tn8lk0rvvvmuZTVHSa/F///d/atmyZaH7GzdurAceeECSSr3eTFlkZ2fr999/14svvqi//e1vlvsnTpxY6j4q4r0JAFUdSRAAgMO5dmFEX19fdevWzTKNvnbt2lq1alWxSYpz587pyJEj2r9/v+VWq1YtSdKvv/5a7PidOnWyLIhYGS5cuKA//vhDBw4csMRerVo1SdLBgwcrdHeWvORGnTp11KNHj0LleYmRnTt36siRIxUWR1l88803luOiTvLydOrUSc2bNy/URlKBhSHHjRtXpvE3b96snJycEscPCQnR3XffXajNtTw8PCy78ZSkpLqrV6+WJDVt2tRyuYk1d955pyTpp59+smmRVMMwdPr0aR0+fLjA5y/v8qWSPn+22L17ty5evCjp6uKm1i5z8ff3tyRRDx48qD///LPIenmXgVnTpk0bSVJSUpJl3PK6dtFRd3d3NWnSRNOnT1dOTo5MJpNeffVV9e7du9R92vu9CQA3AtYEAQBUGaGhoXr44Yc1YcKEItfF2L59u/773//qm2++KXb3hJJ2WmnVqpXNsZbVvn379K9//Utr167V6dOnrdbLzc3VhQsXKmRdkAsXLujLL7+UJA0aNEguLoX/VjJo0CCNHz9eOTk5Wrx4sf7v//7P7nGU1f79+yVdTQjkzTawpn379oqNjdWRI0eUlZUlDw8PSdKePXskSQ0aNFDDhg3LNX5e/yWNv3btWqWnp+vo0aNFzqBo0qRJsWvWlKXurl27JEmHDh0q9S4eV65cUVJSUpnfY19//bXmzJmjLVu2KDU11Wq9itzpqKyvRd6aM/v371edOnUK1alZs2ax62/kXxcnNTXVkqy0J39/f9111136xz/+oS5dupSprb3fmwBwIyAJAgBwOPkXRjSZTPLy8lLNmjUVEBBgtU1UVFSBLVWLc/ny5WLLy7IIoz3Mnz9ff/3rX0v91/eS4i+vpUuXWrYxvfZSmDy1a9dWz549tXbtWn388cd65ZVXKn2LzLyEV/Xq1S1T+q0JCgqSdHW2woULF3TTTTdJ+t+JeVEnwqUdX1KJiYO88a9tl19Z3n8l1T179myp+8ovPT291HUNw9CoUaM0f/78UtWvqPevZP/Xwmw2F9tH/kShrbMnrl101M3NTQEBAQoKCir3Z8zezwcA3AhIggAAHE7t2rUVHh5e6voxMTGWBEijRo00YcIEde7cWQ0aNJCPj4/lxHjKlCmlmrlgbQp9Rfjtt98sCZDatWtr4sSJuuuuuxQSEiI/Pz/LLh0LFiywTGc3DKNCYsm/zsdtt91WYv34+Hht2bJFXbt2rZB4yqqykzH2iqEs77+S6uadmN9yyy36+OOPS91v/p13SrJgwQJLAuTWW2/VuHHj1L59e9WtW1dms9kS47Bhw/TRRx9V2Pv3Wo7wfigLd3f3Mv3eK6uq9nwAQEUhCQIAqPI++OADSVf/Kr5jxw7L2h/XcsS/bi5cuFDZ2dlydXXVd999p2bNmhVZr6JjP3LkiGXR2bJYvHhxoSRI/r+O5+bmWm2blpZW5vGKkndJQmJiorKzs4udDZJ3qZHJZCowiyJvwVBra0OUZnxJOnPmjOrXr1/i+Ne2qyh5l3JcunSpwk6w8z5/jRs31vfff19g0dj8rsfn79rXIiwszGrd6/1aVAZHfm8CQGUhCQIAqPIOHDggSerevbvVBIj0v/UR7MFef1XNi/2WW26xmgCR7Bt7UfLPApkzZ06Jaxt8+OGH2rBhgz7//HPNnj27wImvn5+f5fjChQtW+zh8+HCxY5T2Oc47uc/KytIvv/xi2cGmKD/++KOkq2tp5K0HIl2d+bJt2zYdP35cx44dK9O6IPmTCzt37iz2RDNvfLPZrEaNGpV6jPJq3bq1vv/+ex09elSnT58ucMmDveS9h++//36rCRDDMCy771Ska1+L4tbQyHstrm13I7HXe5NZJABuJOwOAwCo8vLW0ihuZsGePXu0c+dOu42ZfzHKzMzMcvdTmtj//PNPyy4fFcEwDMulEuHh4frrX/+qgQMHFnt78sknJUkpKSmFtjwNDQ21HBeXvPn000+Ljau0z3FkZKTleMGCBVbr/fDDDzp48GChNpLUt29fy/G//vWvYuO6Vrdu3SyXfBQ3/vHjx7Vx48ZCbSpS3rbQhmHoP//5T4WMUZr38BdffFHiLJu819uWz1ObNm0sCbxFixZZnYmUmpqqZcuWSZJatGhRrrVgqgJ7vTft8doAgKMgCQIAqPLydjHYtm2bfv/990Ll586d06OPPmrXMfOfNP3xxx/l7icv9iNHjuj7778vVJ6enq7BgwdX6GKSW7ZsUXx8vCTp4YcfLlWb3r17y9fXV1LBWSTS1URK3nT62bNnF3nitGzZMkVHRxc7Rmmf43bt2llmf3zwwQeKiYkpVCc5OVljxoyRdPVynbwkTp7IyEjLdqdvv/22li5danW8xMTEAq9HcHCwHnzwQUnS2rVrtWjRokJtsrKyNHLkSMv2xs8884zV/u2pZ8+eateunSTpzTfftJz4W7Nv3z7LDkGllfce/vLLL4u85OWPP/7Q008/XWI/ea+3LZ8nT09PPfHEE5Ku7oxS1BpAhmHomWeesSyGe71ei8pgr/dm3mtz9uzZYnf+AYCqgCQIAKDKGzZsmKSrf4nu2rWr3n77bX3//ff6/vvvNXPmTN1yyy06ePCgOnToYLcxW7dubfnr6EsvvaSNGzfq8OHD+v333/X777+XOmmRl5zJzc3Vvffeq+nTp2vLli368ccfNWfOHN16663avHmzOnXqZLfYr5U/idGvX79StfHy8tI999wjSdq4cWOB9QTc3NwsCYf9+/frrrvu0hdffKE9e/Zo3bp1evzxxzVo0CB17Nix2DHyl//973/Xli1bdOTIEctznH83nQ8++EAeHh7Kzs7WPffcowkTJui7777Trl279MEHH+i2227Tvn37JEkTJkwo8vKHjz76SL6+vsrNzdWgQYPUr18/RUdHa/fu3frxxx/1ySef6LHHHlPDhg115syZAm3/9a9/WdYYGTlypEaNGqVvvvlGu3fv1pIlS9S+fXtLcuaRRx5Rnz59SvU828Mnn3yi6tWrKycnRwMGDND999+vJUuW6Mcff9Tu3bu1du1aTZ8+XR06dFCrVq303Xfflan/vM/fqVOn1KFDBy1YsEA//vijtmzZoqioKLVp00ZJSUklLrab93qvXr1a77//vvbv3295rcuyy82UKVMsl3NERUXp4Ycf1tdff62ff/5Zy5cv11133WV5z3fo0EGjR48u0+Otauzx3sx7bXJzc/XXv/5VO3bssLw2RSWeAcChGQAAOIBNmzYZkgxJxssvv1zm9iNGjLC0v/bm6upq/Pvf/zZefvlly31FKev4zz33nNUxN23aZKlX0rhTp0612o8kY/z48caHH35o+TkuLq5QH127djUkGV27di1V7HnS09MNf39/Q5LRtGnTMrVdtmyZJaaZM2cWKEtLSzPuuOMOq4+pW7duxv79+y0/f/jhh0WO8cgjj1jt49rnYf369ZbHYu329NNPGzk5OVYf065du4z69esX24e11+Dnn382goODi2330EMPGZcvXy5y7LK8hmV9vQ8dOmSEh4eX+LgkGVOnTi3TeFlZWUbPnj2t9uft7W0sW7bMGD58uCHJaNiwYZEx7tmzx/D09Cyyj+HDh1vqxcXFlfi+iYuLM5o1a1bs4+zUqZORmJhYZPuSYs1T0ueyNBo2bFiqsazJ/7sz/++d/Gx9b+bk5BT7eQaAqoSZIACAG8KCBQv00UcfqUuXLvLz85Onp6caNmyoRx99VN9//73+9re/2X3M119/XR988IG6dOmi6tWrl3uNhylTpujrr79Wz549FRgYKA8PD9WrV08PPfSQNmzYoJkzZ9o58v9ZtWqVUlJSJJV+Fkiee+65x7IQ5rWXxJjNZn377beaNm2aIiIi5O3tLX9/f7Vt21azZ8/WN998Ix8fnxLH+Pjjj/XGG2+oXbt2CggIKLDzzLV69uyp33//XS+88IJuvfVW+fv7y9PTUw0aNNCQIUO0detWzZ49u9g+2rRpo0OHDum///2v7rrrLtWuXVtubm7y9fVVRESERo8erZiYGIWEhBRq27p1ax06dEivvfaa2rdvr2rVqsnDw0PBwcF66KGHtHr1ai1fvrzAWifXS1hYmH755Rd98skn6tevnxo0aCBvb295eHioTp066tatmyZPnqzdu3drypQpZerb3d1dX3/9tf773//q9ttvl9lslre3txo3bqy//vWv+vnnn9W/f/8S+7n11lv1ww8/aNCgQWrQoIE8PT3L+3AVEhKiX3/9VbNnz1bXrl1Vo0YNubu766abblLv3r310UcfacuWLU6zC4qt700XFxdt2LBBkydP1i233CJfX18WSwVQZZkM4zpt1u6A0tPT9d1332n37t36+eeftXv3bh0/flyS9PLLLysqKsrmMc6cOaM33nhDX331lY4fPy5vb2+1bNlSw4cP1+OPP17iF8gff/yhN954Qxs2bNCff/4pPz8/3XbbbRo9enSZ/7MKAAAAAIAzc+okyObNm9W9e/ciy+yRBNm9e7d69eqlxMRESZKvr68yMjIs1zD36tVLq1evLrBFX35r1qxR//79lZ6eLkny9/fXpUuXLCudjxgxQvPnzycTDwAAAABAKTj95TCBgYHq0aOHJk6cqE8//VRBQUF26Tc5OVn33XefEhMT1axZM/30009KTU1VWlqaZs+eLXd3d61fv17jxo0rsn1cXJweeeQRpaenq1OnTjp06JCSk5OVnJxsmab64Ycf6s0337RLvAAAAAAA3OiceiZITk5Ooeu3Q0JCdOzYMZtngrz00kt69dVX5e3trQMHDig0NLRA+WuvvaYXXnhBrq6uOnjwoMLCwgqUP/roo/r4448VFBSk2NhYy573ecaMGaO5c+fK399f8fHxllW/AQAAAABA0Zx6Jkh5F7ArjbwF4gYOHFgoASJJY8eOla+vr3JycrRkyZICZWlpaVq+fLkk6cknnyyUAJGkSZMmSZJSUlK0atUq+wYPAAAAAMANyKmTIBXl0KFDlgVWi9prXbq6PkiXLl0kSRs2bChQtm3bNl2+fLnY9iEhIWrevHmR7QEAAAAAQGEkQSrA/v37Lcfh4eFW6+WVHTx40Kb2Bw4cKFecAAAAAAA4E7fKDuBGdOrUKctx3bp1rdbLK0tJSdGlS5fk6+tboH1gYKC8vb1LbJ9/vKJkZmYqMzPT8nNubq6SkpJUo0YNdpYBAAAAAFR5hmEoNTVVwcHBcnGxPt+DJEgFSE1NtRybzWar9fKXpaamWpIgee2La5u/PP94RXnttdc0derU4oMGAAAAAKCKO3HihOrVq2e1nCSIE5g0aZL+8Y9/WH5OTk5WgwYNdOLECfn7+1diZEX718bDWvh9vHJyC29c5Opi0mMdQ/T3u8OKaAkAAAAAcEYpKSmqX7++/Pz8iq1HEqQC5H/S09PTrSYa0tPTi2yTd5y/vLj2Jb3Inp6e8vT0LHS/v7+/QyZBhnVtrkW7zsiliM2bTSZpeNfm8vf3uf6BAQAAAAAcWklLPrAwagUIDg62HCckJFitl1fm7+9vuRQmf/sLFy5Ydokprn3+8W4EoTV9NKNfK7nke++6mkxyMUkz+rVSSE0SIAAAAACAsiMJUgHy7+iSf6eXa+WVtWjRwqb2LVu2LFecjqz/7fX19bOdLT+P6Byib8d3U//b61diVAAAAACAqowkSAUICwtTgwYNJEnr1q0rsk5aWpq2bt0qSerZs2eBss6dO1t2hbHW/tixY4qNjS2y/Y2iYY3/zfj4x91hzAABAAAAANiEJEgFMJlMGjZsmCRp6dKlio+PL1TnnXfe0aVLl+Tq6qohQ4YUKPPx8VG/fv0kSXPmzFFycnKh9jNmzJB0dT2QBx54wL4PACWKO5+mGet+09hP92jGut8Udz6tskMCAAAAAJTA6ZMgFy5c0Pnz5y233NxcSVcXHc1//6VLlwq0i4qKkslkkslkKjLJMWHCBAUFBSk9PV333nuvdu/eLUnKysrSnDlz9NJLL0mSRo8erbCwwjudvPLKK/Lx8dGff/6pvn376siRI5KuziB55ZVX9N5770mSJk+erMDAQLs9HyjZsl0n1GPWZs3dclRf7z2luVuOqseszYredaKyQwMAAAAAFMPpd4dp3bq1jh07Vuj+N998U2+++abl5+HDh2vhwoWl7jcgIEBfffWVevXqpYMHD+r222+Xn5+fMjIydOXKFUlXL2P517/+VWT70NBQLVu2TP3799fWrVsVFhamgIAAXbp0STk5OZKkESNGaOLEiWV4tLBV3Pk0Pb98r3INScb/377m///7z+V71TakOpftAAAAAICDcvqZIBWpTZs2OnDggP7+97+rSZMmunLlinx8fNS5c2d98MEHWrt2bZFb1+a55557tHfvXo0aNUohISHKyMhQYGCg7r77bn3++edasGBBidv/wL6W7Tph9Tk3mUz6jNkgAAAAAOCwTIaR9+dsOIuUlBQFBAQoOTlZ/v7+lR2OVelZ2WoxZb0k6eArvWT2qPyJS2M/3aOv9566OhPkGi4m6d5WwXp7UOvrHxgAAAAAOLHSnucyEwQog3qB3sXOBKkX6H2dIwIAAAAAlBZJEKAMHrm9vqxNnjIMQwNur3+dIwIAAAAAlBZJEKAMQmv6aEa/VnLJNxnE1WSSi0ma0a8Vi6ICAAAAgAOr/EUWgCqm/+31FV7XX33+s02SNKJziIa2b0gCBAAAAAAcHEkQoBwa1vhfwuMfd4c5xKKtAAAAAIDicTkMAAAAAABwCiRBAAAAAACAUyAJAgAAAAAAnAJJEAAAAAAA4BRIggAAAAAAAKdAEgQAAAAAADgFkiAAAAAAAMApkAQBAAAAAABOgSQIAAAAAABwCiRBAAAAAACAUyAJAgAAAAAAnAJJEAAAAAAA4BRIggAAAAAAAKdAEgQAAAAAADgFkiAAAAAAAMApkAQBAAAAAABOgSQIAAAAAABwCiRBAAAAAACAUyAJAgAAAAAAnAJJEAAAAAAA4BRIggAAAAAAAKdAEgQAAAAAADgFkiAAAAAAAMApkASRlJqaqqioKEVERMjX11cBAQFq27atZs2apaysrDL3Fx8fL5PJVOrbiBEjCvXx2GOPlaptdna2PZ4CAAAAAABueG6VHUBlO3bsmLp166b4+HhJktlsVmZmpnbt2qVdu3ZpyZIliomJUWBgYKn7dHV11U033VRsnYyMDCUnJ0uS2rZta7Wel5eXAgICrJabTKZSxwUAAAAAgDNz6pkg2dnZ6tu3r+Lj41WnTh1t3LhRaWlpSk9P19KlS+Xn56c9e/Zo6NChZeq3fv36On36dLG3Rx99VJLk7e2twYMHW+1rwIABxfbj6upq03MAAAAAAICzcOokyKJFi7Rv3z5J0vLlyxUZGSlJcnFx0YABA/T+++9LktasWaOYmBi7jZuRkaElS5ZIkvr166dq1arZrW8AAAAAAFA0p0+CSFL37t3VoUOHQuUDBw5UaGioJGnx4sV2G3fFihW6cOGCJOmJJ56wW78AAAAAAMA6p02CpKena/v27ZKkPn36FFnHZDKpd+/ekqQNGzbYbez58+dLkpo0aaKuXbvarV8AAAAAAGCd0yZBYmNjlZubK0kKDw+3Wi+v7PTp00pKSrJ53KNHj2rTpk2SpMcff7zE+jExMQoLC5OXl5f8/f0VERGhcePG6ciRIzbHAgAAAACAM3HaJMipU6csx3Xr1rVaL39Z/jbltWDBAhmGITc3Nw0fPrzE+idPntTRo0dlNpuVnp6u/fv36z//+Y/Cw8M1Z86cUo2ZmZmplJSUAjcAAAAAAJyN0yZBUlNTLcdms9lqvfxl+duUR05OjhYuXChJuvfeexUUFGS17m233abZs2crPj5emZmZSkpKUkpKipYvX66bb75ZWVlZeuqpp7R8+fISx33ttdcUEBBgudWvX9+mxwEAAAAAQFXktEmQyrBu3TolJCRIKnlB1GeffVZPP/20GjZsaNkG12w266GHHtLOnTstC7aOHz9ehmEU29ekSZOUnJxsuZ04ccIOjwYAAAAAgKrFaZMgfn5+luP09HSr9fKX5W9THvPmzZN09RIba4uxlkaNGjX0wgsvSJKOHTumPXv2FFvf09NT/v7+BW4AAAAAADgbp02CBAcHW47zZmcUJX9Z/jZldebMGX311VeSpMcee8wyu6O88m/pe/ToUZv6AgAAAADAGThtEqR58+Zycbn68Pfv32+1Xl5ZUFCQqlevXu7xFi9erOzsbJlMJo0cObLc/QAAAAAAgPJx2iSI2WxWp06dJF1dq6MohmFo/fr1kqSePXvaNN78+fMlSd27d1ejRo1s6kuSduzYYTnOWx8EAAAAAABY57RJEEmWLWo3bdqknTt3FiqPjo62XGoybNiwco+zbds2HTp0SFLJC6JKKnGh06SkJE2fPl2SVL9+fbVu3brcsQEAAAAA4CycPgkSEREhwzDUr18/xcTESJJyc3MVHR2tUaNGSZL69OmjHj16FGgbFRUlk8kkk8mk+Pj4YsfJWxC1evXqeuihh0qM6+OPP9ZDDz2k5cuX6+zZs5b7L1++rFWrVqlDhw6W5Mybb75puawHAAAAAABY51bZAVQmNzc3rV69Wt27d1d8fLwiIyNlNpuVm5urjIwMSVLr1q21ZMmSco+RkpKi6OhoSdLQoUPl6elZYpucnBytXLlSK1eulCT5+PjIy8tLFy9eVE5OjqSrO7689dZbGjBgQLljAwAAAADAmTh1EkSSQkJCtHfvXs2cOVMrVqxQXFyc3N3d1bJlSw0aNEhjx46Vh4dHuftfunSpZZvd0lwKI11dN2TatGn64YcfFBsbq8TERCUnJ8vf31+NGzfWXXfdpTFjxrAWCAAAAAAAZWAySlqAAjeclJQUBQQEWBIrjio9K1stplxdmPbgK71k9nCcnJ0jxwYAAAAAzqa057ksJgEAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgklJTUxUVFaWIiAj5+voqICBAbdu21axZs5SVlVWuPqOiomQymUq8/f7778X28/PPP2vo0KGqV6+ePD09VadOHT344IP69ttvyxUXAAAAAADOyq2yA6hsx44dU7du3RQfHy9JMpvNyszM1K5du7Rr1y4tWbJEMTExCgwMLFf/7u7uql69utVyNzfrL8G8efP05JNPKjs7W5IUEBCgM2fOaNWqVVq1apVefvllRUVFlSsuAAAAAACcjVPPBMnOzlbfvn0VHx+vOnXqaOPGjUpLS1N6erqWLl0qPz8/7dmzR0OHDi33GB07dtTp06et3kJCQops98MPP+ivf/2rsrOz9cADD+jEiRO6ePGizp07pzFjxkiSpk6dqmXLlpU7NgAAAAAAnIlTJ0EWLVqkffv2SZKWL1+uyMhISZKLi4sGDBig999/X5K0Zs0axcTEXNfYnnvuOeXk5CgiIkLLli1TvXr1JEk1atTQe++9p169ekmS/vnPfyonJ+e6xgYAAAAAQFXk9EkQSerevbs6dOhQqHzgwIEKDQ2VJC1evPi6xXX06FFt27ZNkjRhwgS5u7sXqjNp0iRJUnx8vLZs2XLdYgMAAAAAoKpy2iRIenq6tm/fLknq06dPkXVMJpN69+4tSdqwYcN1i23jxo2W47zxr9W5c2f5+flJur6xAQAAAABQVTltEiQ2Nla5ubmSpPDwcKv18spOnz6tpKSkMo9z4MABhYeHy2w2y9fXV02bNtWoUaO0Z88eq232798vSapdu7Zq165dZB1XV1c1a9bMMgYAAAAAACie0yZBTp06ZTmuW7eu1Xr5y/K3Ka3z588rNjZW3t7eyszM1OHDhzVv3jy1adNGkydPLja24uLKX15SXJmZmUpJSSlwAwAAAADA2ThtEiQ1NdVybDabrdbLX5a/TUmaNGmiN954Q4cOHVJGRoYSExOVlpam9evXq02bNjIMQ9OmTdOsWbOsxlZcXPnLS4rrtddeU0BAgOVWv379Uj8OAAAAAABuFE6bBKloQ4YM0cSJExUWFmZZ2NTDw0M9e/bUtm3b1LZtW0lSVFSUkpOTKzSWSZMmKTk52XI7ceJEhY4HAAAAAIAjctokSN6iotLVRVKtyV+Wv40tvLy8NH36dEnSpUuXCm2/mzdOcXHlLy8pLk9PT/n7+xe4AQAAAADgbJw2CRIcHGw5TkhIsFovf1n+NrbKvyXv0aNHi4ytuLjyl9szLgAAAAAAblROmwRp3ry5XFyuPvy83ViKklcWFBSk6tWrX5fY8nakOXv2rM6dO1dknZycHP3222+SpJYtW16XuAAAAAAAqMqcNgliNpvVqVMnSdK6deuKrGMYhtavXy9J6tmzp13H37Fjh+U4NDS0QNndd99tObYW2/bt2y0Loto7NgAAAAAAbkROmwSRpOHDh0uSNm3apJ07dxYqj46OtlyqMmzYsFL3axhGseWZmZl68cUXJUk+Pj7q0aNHgfJGjRqpc+fOkqRZs2bpypUrhfp4/fXXJUkNGzbUnXfeWerYAAAAAABwVk6fBImIiJBhGOrXr59lgdLc3FxFR0dr1KhRkqQ+ffoUSlRERUXJZDLJZDIpPj6+QNmWLVsUGRmpjz76SCdPnrTcf+XKFcXExKhLly6WpMuUKVNUrVq1QrHNmDFDrq6u+vXXXzVw4EDL+h9JSUl66qmntHbtWknSG2+8IVdXV7s8HwAAAAAA3MjcKjuAyuTm5qbVq1ere/fuio+PV2RkpMxms3Jzc5WRkSFJat26tZYsWVKmfg3DUExMjCWp4u3tLR8fHyUnJ1tmdbi4uOj555/Xc889V2QfHTt21Hvvvacnn3xSK1as0IoVK1StWjUlJydbZpq8/PLLeuSRR8r78AEAAAAAcCpOPRNEkkJCQrR3715NmTJF4eHhMplMcnd3V5s2bTRz5kzt2LFDgYGBZeozIiJCM2fOVL9+/RQWFiZvb29dvHhR3t7euuWWW/TMM8/ol19+0bRp04rt54knntDOnTs1ePBg1a1bV+np6apdu7YeeOABxcTEKCoqyoZHDgAAAACAczEZJS1ggRtOSkqKAgIClJycLH9//8oOx6r0rGy1mHJ1YdqDr/SS2cNxJi45cmwAAAAA4GxKe57r9DNBAAAAAACAcyAJAgAAAAAAnAJJEAAAAAAA4BRIggAAAAAAAKdAEgQAAAAAADgFkiAAAAAAAMApkAQBAAAAAABOgSQIAAAAAABwCiRBAAAAAACAUyAJAgAAAAAAnAJJEAAAAAAA4BRIggAAAAAAAKdAEgQAAAAAADgFkiAAAAAAAMApkAQBAAAAAABOgSQIAAAAAABwCiRBAAAAAACAUyAJAgAAAAAAnAJJEAAAAAAA4BTc7NHJH3/8oWXLlmnv3r1KSkrSlStXrNY1mUyKiYmxx7AAAAAAAAClZnMSZOrUqXr11VeVm5srwzBKrG8ymWwdEgAAAAAAoMxsSoIsWbJEU6dOlSQFBwerV69eCg4OlpubXSaYAAAAAAAA2I1N2Yp33nlHknT//fdr2bJl8vDwsEtQAAAAAAAA9mbTwqj79++XyWTSu+++SwIEAAAAAAA4NJuSICaTSf7+/goODrZXPAAAAAAAABXCpiRIs2bNlJ6erszMTHvFAwAAAAAAUCFsSoI88cQTunLliqKjo+0VDwAAAAAAQIWwKQkyatQo3X///Xr22We1ZcsWe8UEAAAAAABgdzbtDvPKK6/olltu0datW9W9e3d16tRJ7du3l5+fX7HtpkyZYsuwdpeamqpZs2Zp+fLliouLk6urq8LCwjRw4ECNHTu2XIu+JiQk6IsvvtCmTZu0Z88eJSQkSJKCgoJ0xx13aNSoUbrrrrusto+KirJsP1ycI0eOqHHjxmWODwAAAAAAZ2NTEiQqKkomk0mSZBiGtm3bpu3bt5fYzpGSIMeOHVO3bt0UHx8vSTKbzcrMzNSuXbu0a9cuLVmyRDExMQoMDCx1nydOnFDDhg1lGIblPrPZLMMwFB8fr/j4eC1dulQjR47U3Llz5erqarUvd3d3Va9e3Wq5m5tNLyEAAAAAAE7DpjPoO++805IEqYqys7PVt29fxcfHq06dOlq8eLEiIyOVm5ur6OhojRo1Snv27NHQoUP19ddfl7rfnJwcGYahHj16aNiwYYqMjFRwcLByc3P122+/6YUXXtAXX3yhBQsWKDg4WP/3f/9nta+OHTtq8+bNdni0AAAAAAA4N5uSIFX95HzRokXat2+fJGn58uXq0KGDJMnFxUUDBgxQbm6uBg8erDVr1igmJkY9evQoVb+BgYHavXu3brvttgL3u7i4qEWLFlq5cqXuuecerVu3Tv/+97/14osvysvLy74PDgAAAAAAFGDTwqhV3aJFiyRJ3bt3tyRA8hs4cKBCQ0MlSYsXLy51vwEBAYUSIPmZTCaNHDlSknTp0iXFxsaWJWwAAAAAAFAOTpsESU9Pt6xf0qdPnyLrmEwm9e7dW5K0YcMGu46ff+ZHTk6OXfsGAAAAAACF2W1VzaysLG3cuFG7du3S2bNnJUm1a9dW27ZtFRkZWa4dVipSbGyscnNzJUnh4eFW6+WVnT59WklJScUuUloWeZcSeXh4KCwszGq9AwcOKDw8XEePHpWLi4vq1q2rO++8U0899ZRat25tl1gAAAAAAHAGdkmCzJ07Vy+99JLOnz9fZHnNmjX16quvatSoUfYYzi5OnTplOa5bt67VevnLTp06ZZckSFxcnN577z1J0oABA+Tv72+17vnz55WUlKRq1aopJSVFhw8f1uHDhzV//ny98MILevXVV0scLzMzU5mZmZafU1JSbH4MAAAAAABUNTZfDvPPf/5TTz75pM6dOyfDMBQcHKx27dqpXbt2Cg4OlmEYOnfunP7617/q+eeft0fMdpGammo5NpvNVuvlL8vfprwuX76s/v37Kz09XTVr1tTrr79eZL0mTZrojTfe0KFDh5SRkaHExESlpaVp/fr1atOmjQzD0LRp0zRr1qwSx3zttdcUEBBgudWvX9/mxwEAuDHEnU/TjHW/aeynezRj3W+KO59W2SEBAABUGJuSIN99953efPNNGYahfv366eDBgzpx4oR++OEH/fDDDzpx4oRiY2P18MMPyzAMvfnmm9q6dau9Yq9ysrOzNXjwYO3evVvu7u5asmSJgoODi6w7ZMgQTZw4UWFhYXJ3d5d09dKZnj17atu2bWrbtq0kKSoqSsnJycWOO2nSJCUnJ1tuJ06csO8DAwBUSct2nVCPWZs1d8tRfb33lOZuOaoeszYrehffEwAA4MZkUxLknXfekSQ9/vjjio6OVrNmzQrVadq0qZYtW6bHH39chmFo9uzZtgxpN35+fpbj9PR0q/Xyl+VvU1Y5OTkaMmSIVq1aJTc3N33yySfq2bNnufry8vLS9OnTJV3dXSYmJqbY+p6envL39y9wAwA4t7jzaXp++V7lGlJOrlHg338u36t4ZoQAAIAbkE1JkO+//14uLi6aNm1aiXVfffVVmUwmy44slS3/DIyEhASr9fKXWZu1UZKcnBwNHTpUy5Ytk6urqz7++GM9/PDD5eorT/4tfY8ePWpTXwAA57Ns1wmZTKYiy0wmkz5jNggAALgB2ZQEOX/+vAICAlS7du0S6950002qVq2a1cVTr7fmzZvLxeXqw9+/f7/VenllQUFB5VoUNW8GyNKlSy0JkAEDBpQvaAAA7OTkhcsyDKPIMsMwdPLC5escEQAAQMWzKQni5+en1NRUZWRklFj38uXLSk1Nla+vry1D2o3ZbFanTp0kSevWrSuyjmEYWr9+vSSV69KVnJwcDR48WJ999pklATJw4MDyB53Pjh07LMehoaF26RMA4DzqBXoXOxOkXqD3dY4IAACg4tmUBGnVqpVycnK0YMGCEusuWLBA2dnZuuWWW2wZ0q6GDx8uSdq0aZN27txZqDw6OtpyqcmwYcPK1HfeDJBly5bJzc1NS5YsKXUCxNpf5vJkZmbqxRdflCT5+PioR48eZYoNAIBHbq9f7EyQAbezkxgAALjx2JQEGTJkiAzD0Pjx4zV//nyr9ebNm6fx48fLZDLp0UcftWVIuxo+fLgiIiIsu9vkLTCam5ur6OhojRo1SpLUp0+fQomGqKgomUwmmUwmxcfHFyjLWwPks88+syyCWpZLYLZs2aLIyEh99NFHOnnypOX+K1euKCYmRl26dLEkbaZMmaJq1aqV49EDAJxZaE0fzejXSi75JoO4mkxyMUkz+rVSSE2fygsOAACggrjZ0vixxx7TRx99pO+++06jR4/WK6+8ou7du6tu3bqSpJMnT2rTpk1KSEiQYRjq1q2bZfaFI3Bzc9Pq1avVvXt3xcfHKzIyUmazWbm5uZZLfFq3bq0lS5aUqd/t27dr6dKlkq5OKR47dqzGjh1rtf5//vOfAkkSwzAUExNjScp4e3vLx8dHycnJunLliiTJxcVFzz//vJ577rkyxQYAQJ7+t9dXeF1/9fnPNknSiM4hGtq+IQkQAABww7IpCeLi4qIvvvhCI0eO1IoVK3TixAl99NFHBerkTbXt16+f5s+fb/X648oSEhKivXv3aubMmVqxYoXi4uLk7u6uli1batCgQRo7dqw8PDzK1Gdubq7l+MqVKzpz5kyx9S9fLrj4XEREhGbOnKkffvhB+/bt0/nz53Xx4kWZzWa1aNFCXbp00ejRoxUREVGmuAAAuFbDGv9LePzj7jCZPWz6rwEAAIBDMxklLUBRSj/++KM+++wz7dq1S2fPnpUk1a5dW7fffrsGDhyotm3b2mMY2EFKSooCAgKUnJwsf3//yg7HqvSsbLWYcnVh2oOv9HKo/5g7cmwAUBb8PgMAADeC0p7n2u1/Ou3atVO7du3s1R0AAIBDijufpmW7TujkhcuqF+itR26vr1AuIQIAoErgzz0AAMAhOWKyYdmuE3p++V6ZTCYZhiGTyaT3v/tDM/q1Un921AEAwOGRBAEAAA7HEZMNcefT9Pzyvco1JOVdTfz///3n8r1qG1KdRWUBAHBwpU6CLF68WJIUEBCgv/zlLwXuK6thw4aVqx0AALjxOWqyYdmuE1cXeC9iOTWTyaTPdp3QP3s3u+5xAQCA0it1EuSxxx6TyWRS06ZNLUmQvPvKwmQykQQBAABWOWqy4eSFy7K2nrxhGDp54XKRZQAAwHGUOgnSoEEDmUwmBQcHF7oPAADAXhw12VAv0LvY5Ey9QO9KiAoAAJRFqZMg8fHxpboPcHQ//JFocx8ZV3IsxzuPJsnL3dXmPgGgMjji77OS/rxikn1+l5dVk9q+yrWSnMk1DIXV9quUuAAAqEgdbq5R2SHYlUtlBwAAAJBft6a1VHSqQTIkdW9a+3qGY1EnwFtj7myk/JNgXUySySSNubORggK8KiUuAABQejYlQY4fP66EhIRS1z916pSOHz9uy5AAAOAG58jJhq5htfXagxGWn3uHB+mt/reqa1jlJGYAAEDZ2LRFbkhIiOrUqVPqREinTp104sQJZWdn2zIsAABF+jP5sjYfOqdzlzJVy9dT3ZrWUp0A1mmoirqG1VZIDR89v2KfpKvJhrubBznEbIub/P8XQ/829R3iEiIAAFA6NiVBJFlduMxe9QEAKI3Nh85q7tajMunqJRMmSV/uPaUxdzbir/RVFMkGAABgb9d1TZCMjAy5udmcdwEAoIA/ky9r7tajMgwp11CBf9/fclSnkzMqO0QAAAA4gOuWBDl16pTOnTunGjVurJVlAQCVb/Ohc1Z3FDFJ2nTo7PUMBwAAAA6qTNMytmzZos2bNxe479KlS3rllVestjEMQxcvXtSaNWtkGIbat29frkABALDm3KXMYncTOXcp83qGAwAAAAdVpiTIpk2bNHXqVJnyLdeelpamqVOnltjWMAx5eXlp0qRJZY8SAIBi1PL1tKwFci3T/y8HAAAAypQECQkJUdeuXS0/f/fdd3J3d1eHDh2stnFxcZG/v7/Cw8M1fPhwNW7cuPzRAoCdsZvIjaFb01r6cu+pIssMSd2bsjAqgKqH7ygAsL8yJUGGDx+u4cOHW352cXFR9erVtWnTJrsHBgAVjd1Ebhx1Arw15s5Gen/L1cVRJcnFdPV1HXNnI4fYVpWTGQBlwXcUAFQMm7Zq+fDDD+XtzX/gAFQ9+XcTybuEIu/f97ccVdOb/B3ixBml1zWstkJq+Oj5FfskSb3Dg3R38yCHeB05mQFQFnxHAUDFsWl3mOHDh+uRRx6xVywAcN2wm8iN6Sb//50U9G9T3yFOEti+F0BZ8R0FABXHppkgAFBVVYXdRLh84saQdzJjbdHWTYfOalC7Btc5KgCOrCp8R6Fs+E4HHIddkiCZmZlavny5tm3bppMnTyotLU2GUfSvbpPJpJiYGHsMCwDl5ui7iXD5xI2DkxkAZeXo31EoG77TAcdicxLk+++/14ABA3Tq1CkZhmHZPjcvCZJ/O9385QBQmRx5NxGuBb+xcDIDoKwc+TsKZcN3OuB4bFoT5MSJE7r33nuVkJCgiIgIPffcczIMQz4+Ppo8ebKeeOIJhYaGyjAM1ahRQ5MnT9aUKVPsFTsAlFvebiL587IuJslkqvzdRLgW/MbSrWmtYmeCcDID4FqO/B2FsuE7HXA8Ns0Eeeutt5ScnKw+ffroq6++kslk0htvvCFfX1+98sorlnpz5szRs88+q19//VVffPGFzUEDgD046m4iXD5xY6kK2/cCcDyO+h2FsqkK3+msVwJnY1MSZMOGDTKZTJo6dWqxl7k8+eSTunDhgl566SV98MEHGjVqlC3DAoDdXLubiJe7ayVGcxWXT9x4OJkBUB6O+B2FsnH073TWKykfEkdVm02Xwxw/flwuLi667bbbCtyflZVVqO7TTz8tk8mkhQsX2jIkgCrqz+TL+vTH4/rvt0f06Y/H9Wfy5coOyWFx+cSNyRG37wUAVCxH/k5nC/fy2XzorMZH/6qv9p7SjqOJ+mrvKY2P/lXfHebSpqrCpiSIYRgKDAyUi8v/uvHx8VFKSkqh3WECAgIUEBCg3377zZYhAVRBfFmUDdeCAwBQPo72RxdH/k5nvZKyI3F0Y7Dpcpi6devq+PHjBe6rV6+eDh8+rNjYWLVo0cJyf3p6ui5evCgPDw9bhgRQxbAqevlw+QQAAGXjqJd2OOp3elVYr8TR5CWOrF3etOnQWQ1q1+A6R4WysmkmSKNGjZSVlaU//vjDcl/79u0lSe+9916Bum+99ZYMw1BISIgtQ1aI1NRURUVFKSIiQr6+vgoICFDbtm01a9asIi/tKYszZ85o/Pjxatq0qby9vVW9enV16dJF8+bNKzRbpih//PGHxowZo9DQUHl5ealWrVrq1auXli9fblNcwPXCXxnKj8snAACOyNFmW+TF5Mh/oXfE7/S89UqK4gjrlTgiEkc3BptmgnTr1k3r16/Xxo0bdfPNN0uSnnjiCS1evFjvvPOOfv/9d7Vu3Vq//vqr1q5dK5PJpEGDBtklcHs5duyYunXrpvj4eEmS2WxWZmamdu3apV27dmnJkiWKiYlRYGBgmfvevXu3evXqpcTEREmSr6+vUlNTtW3bNm3btk2ff/65Vq9ebXV2zJo1a9S/f3+lp6dLkvz9/ZWUlKQNGzZow4YNGjFihObPn1/sorRAZePLAgCAG4ejzrbgL/Rl161pLX2591SRZZW9XomjcvSFblE6Ns0EGTBggLp27arDhw9b7uvcubMmTpwowzC0bt06vf7661qzZo0Mw1CXLl30/PPP2xy0vWRnZ6tv376Kj49XnTp1tHHjRqWlpSk9PV1Lly6Vn5+f9uzZo6FDh5a57+TkZN13331KTExUs2bN9NNPPyk1NVVpaWmaPXu23N3dtX79eo0bN67I9nFxcXrkkUeUnp6uTp066dChQ0pOTlZycrKmTJkiSfrwww/15ptv2vIUABWOvzIAAHBjcOTZFvzRpewceb0SR+XIC92i9GxKgoSEhGjTpk166623Ctw/Y8YMbdiwQSNHjlRkZKQefvhhzZs3T998841DrQmyaNEi7dt39dq85cuXKzIyUpLk4uKiAQMG6P3335d0dUZGTExMmfqeOXOmTp8+LW9vb61Zs0a33367JMnDw0NPP/20pk6dKkmaO3dugSRSnilTpigtLU1BQUH66quvFBYWJunqbJKpU6dq9OjRkqRp06bpwoUL5Xj0wPXBl8WNyRGnQgMAKpYjX+LKH13Kp2tYbb32YITl597hQXqr/61sj2sFiaMbg01JkOJERkZq3rx5Wr9+vZYtW6aRI0fKzc2mq2/sbtGiRZKk7t27q0OHDoXKBw4cqNDQUEnS4sWLy9R3Xv38feQ3duxY+fr6KicnR0uWLClQlpaWZlnz48knn1S1atUKtZ80aZIkKSUlRatWrSpTbMD1xJfFjYfdfgDAOTnybAv+6FJ+jrheiSMjcVT1VVgSxNGlp6dr+/btkqQ+ffoUWcdkMql3796SpA0bNpS670OHDll2zbHWt6+vr7p06VJk39u2bdPly5eLbR8SEqLmzZuXOTagMvBlceNw5KnQAICK5cizLfijC64nEkdVm9MmQWJjY5WbmytJCg8Pt1ovr+z06dNKSkoqVd/79+8v1L64vg8ePGhT+wMHDpQqLqAy8WVxY3DkqdAAgIrl6LMt+KMLgNIo9fUpZb0cpDjDhg2zW1/lderU/1ZCrlu3rtV6+ctOnTql6tWr273vlJQUXbp0Sb6+vgXaBwYGytvbu8T2+ccri/SsbLllZZer7fWQni+2dDvGmXElx+Y+MvP1kWmH/pyBoz5njhqX5JixnUnJKPY/wGdSMuzyGSsvR3zO8jhqbI4al+S4sTlqXLjxONp7LdDsoZEdQ7Vge5zlu8DFdPX3/8iOoapmdq/U7wBJqubtbjm+v1WwPN1dKz0myfFey/wcOTZH5WzPmT3PxSpSaeM0GYZh7f+zBbi4uNhlK1aTyaTs7Mp/Ej/55BMNGTJEknTkyBE1bty4yHobN25Uz549JUnff/99kWuHXGv69Ol68cUXJUlXrlyxuhbKBx98YFng9NSpU6pTp44kafTo0frggw9Ut25dnTx50uo4L774oqZPny4PDw9lZlq/BjMzM7NAeUpKiurXr6/645bJxdNc4uMBAAAAAMCR5Wam68S/H1FycrL8/f2t1iv1TJAGDRrYJQmC6++1116z7EYDAAAAAICzKnUSJD4+vgLDuP78/Pwsx+np6Vbr5S/L36YsfVvLQlnrO++4uLjyl5cU16RJk/SPf/zD8nPeTJAfX+xRbIbsRrXzaOnWdqmKMq/k6K9LfpYkvTfkNnm6u1ZyRLgRbTtyXgu+j5NJV6dA5/07smOoOjepWbnBAU7OUb8HHDUuSTqemKaXv7y6PluvFjepW7PaCvJn3Sqgsjny7w1HVVHPWftGJS8J4QhSUlJU598l13OsPWuvo+DgYMtxQkKCWrVqVWS9hISEItuUpW9riYa8vv39/S3rgeRvf+HCBV2+fNnquiB57UuKy9PTU56ehVfrNnu4yezhfG8BLyf5Berp7uo0jxXXV2SLmxReN0CbDp3VuUuZquXrqe5Na7PYLeBgHPV7wJHi2nzorOZuPWr5eWPsGW2IPaMxdzZiMU3AgTjS742qwp7PWVU5Z8wuZZxOuztM8+bN5eJy9eHn343lWnllQUFBpVoUVSq4o0tp+m7RooVN7Vu2bFmquADAXoICvDSoXQM9e1cTDWrXgAQIgCon/5bfedjyGwBufHZLguTm5uqnn37S559/btedZCqK2WxWp06dJEnr1q0rso5hGFq/fr0kWRZHLY2wsDA1aNCg2L7T0tK0devWIvvu3LmzZfaHtfbHjh1TbGxsmWMDAAAAW34Dju50yv8SkdG7T+jP5MuVGA1uJHZJgrz99tuqU6eO7rjjDg0YMEAjRowoUH7hwgWFh4erWbNmOnPmjD2GtIvhw4dLkjZt2qSdO3cWKo+OjtbRo1enSJZlW1+TyWSpv3Tp0iLXU3nnnXd06dIlubq6WnapyePj46N+/fpJkubMmaPk5ORC7WfMmCHp6nogDzzwQKljAwAAgHTuUmaxW36fu2R95z0AFWvzobN6YeU+y8/r9p/W+Ohf9d1hkpOwnc1JkKefflrjxo3TuXPn5OfnV+QOMoGBgbrtttt05MgRRUdH2zqk3QwfPlwREREyDEP9+vVTTEyMpKuzWqKjozVq1ChJUp8+fdSjR48CbaOiomQymWQymYpMckyYMEFBQUFKT0/Xvffeq927d0uSsrKyNGfOHL300kuSrm6HGxYWVqj9K6+8Ih8fH/3555/q27evjhw5IunqDJJXXnlF7733niRp8uTJCgwMtM8TAgAA4CRq+XoWOxOklm/h9dQAVDwuVUNFsykJsm7dOs2ZM0e+vr5auXKlLl68qFq1ahVZd/DgwTIMQ998840tQ9qVm5ubVq9erZCQECUkJCgyMlI+Pj7y8fHRI488opSUFLVu3VpLliwpc98BAQH66quvVKNGDR08eFC33367ZQHUp556SllZWerZs6f+9a9/Fdk+NDRUy5Ytk9ls1tatWxUWFqZq1aopICBAL7/8sgzD0IgRIzRx4kRbnwYAAACn061prWJngnRvysKoQGXgUjVUNJuSIO+9955MJpNeeeUV/eUvfym2bocOHSRJ+/btK7be9RYSEqK9e/dqypQpCg8Pl8lkkru7u9q0aaOZM2dqx44d5Z5p0aZNGx04cEB///vf1aRJE125ckU+Pj7q3LmzPvjgA61du7bIXVvy3HPPPdq7d69GjRqlkJAQZWRkKDAwUHfffbc+//xzLViwoMiZNwAAAChenQBvjbmzkUwmycWkAv+OubMRCz4DlYRL1VDRbNrrJm8djZEjR5ZYNyAgQP7+/jp9+rQtQ1YIPz8/TZ06VVOnTi11m6ioKEVFRZVY76abbtJbb72lt956q1yx3XzzzZo7d2652gIAAMC6rmG11fQmf7b8BhxI3qVqRSVCuFQN9mBTEiQpKUkBAQHy8/MrVX0XFxfl5ubaMiQAAABgN3lbfgNwDN2a1tKXe08VWcalarAHmy6H8ff3V0pKiq5cuVJi3aSkJCUnJ6tmzZq2DAkAAAAAuEFxqRoqmk0zQSIiIvTdd99p586d6ty5c7F1P/30UxmGodtvv92WIQEAAAAANzAuVUNFsikJ8vDDD2vz5s2KiorShg0b5OJS9MSSX3/9VZMnT5bJZNKgQYNsGRIAAAAAcIPjUjVUFJsuhxk1apRatGihTZs26e6779ZXX32lnJwcSdKRI0e0ceNGPfvss+rYsaOSk5N1xx13qH///nYJHAAAAAAAXHU6JcNyHL37hP5MvlyJ0Tgum2aCuLu76+uvv1bv3r21adMmbd682VLWrFkzy7FhGIqIiNDy5cvZ0hUAAAAAADvafOis5m49avl53f7TWrv/tMbc2Uhdw1hMNj+bZoJIUsOGDbV7925NnTpVDRo0kGEYBW7BwcGKiorS999/r6CgIHvEDAAAAAAAJP2ZfFlztx6VkW9f4VxDMgzp/S1HdTo5w3pjJ2TTTJA8ZrNZL730kl566SWdOnVKp06dUk5OjoKCgtSwYUN7DAEAAAAAAK6x+dA5mXR1C+FrmSRtOnSW9VXysSkJctddd8lkMmnu3Lm6+eabJUnBwcEKDg62S3AAAAAAAMC6c5cyi0yASFcTI+cuZV7PcByeTUmQbdu2yd3d3ZIAAQAAAAAA108tX89iZ4LU8vW8zhE5NpvWBLnpppvk4eFhr1gAAAAAAEAZdGtaq9iZIN2bsjBqfjYlQe68806lpKToyJEj9ooHAAAA5cT2iADgfOoEeGvMnY1kMkkuJhX4d8ydjRQU4FXZIToUmy6HmTBhgj7//HONHz9eX3zxBdvfAgAAVBK2RwQA59U1rLaa3uSvTYfO6tylTNXy9VT3prVJgBTBppkgrVu31qeffqrNmzerU6dOWrlypc6cOSPDsDYZBwAAAPbG9ogAgKAALw1q10DP3tVEg9o1IAFihU0zQVxdXS3HO3fu1MMPP1xiG5PJpOzsbFuGBQAAQD5sjwgAQOnYlARhxgcAAEDlY3tEAABKx6YkyKZNm+wVBwAAAMqJ7REBACgdm5IgXbt2tVccAAAAKKduTWvpy72niixje0QAAP7HpoVRQ0NDdfPNN+v333+3VzwAAAAoI7ZHBACgdGyaCfLnn3/Kw8NDjRs3tlc8AAAAKAe2RwQAoGQ2JUGCg4N17tw5e8UCXBcdbq5R2SFUmPSs/+281L5RdZk9bPqIAwCqoAdvq1vZIRTC9xMAwFHYdDlMZGSk0tPTtWfPHnvFAwAAAAAAUCFsSoI8//zz8vHx0TPPPKP09HR7xQQAAAAAAGB3Ns1FdHNz0/vvv68xY8YoPDxcY8eOVceOHVW7dm25urpabdegQQNbhgUAAAAAACgzm5IgoaGhluO0tDRNmDChxDYmk0nZ2dkl1gMAAAAAALAnm5IghmFclzYAAAAAAAC2sikJEhcXZ684AAAAAAAAKpRNSZCGDRvaKw4AAAAAAIAKZdPuMDeC1NRURUVFKSIiQr6+vgoICFDbtm01a9YsZWVllbvfhIQEvfvuu+rfv78aN24sb29veXt7KzQ0VIMGDdK3335bbPuoqCiZTKYSb7///nu5YwQAAAAAwJnYNBOkKMeOHdPZs2clSbVr13bo2SLHjh1Tt27dFB8fL0kym83KzMzUrl27tGvXLi1ZskQxMTEKDAwsU78nTpxQw4YNC6x/YjabZRiG4uPjFR8fr6VLl2rkyJGaO3dusTvpuLu7q3r16lbL3dzs/hKiCotPTLMcv7XxsIa0b6jQmj6VGBEAAAAAOA67zAT5888/9eyzz6p27dpq1KiR7rjjDt1xxx1q1KiRateurXHjxunPP/+0x1B2k52drb59+yo+Pl516tTRxo0blZaWpvT0dC1dulR+fn7as2ePhg4dWua+c3JyZBiGevTooUWLFikhIUFpaWm6dOmSDhw4oL/85S+SpAULFigqKqrYvjp27KjTp09bvYWEhJTj0eNGtGzXCd33322Wnz/cFq8eszYreteJSowKAAAAAByHzUmQ7du3q1WrVnrnnXd0/vx5GYZR4Hb+/Hm9/fbbuuWWW/T999/bI2a7WLRokfbt2ydJWr58uSIjIyVJLi4uGjBggN5//31J0po1axQTE1OmvgMDA7V792598803GjZsmIKDgy19t2jRQitXrlTv3r0lSf/+97+VkZFhr4cFJxV3Pk3PL9+r3HybL+UYhnIN6Z/L9yr+fJr1xgAAAADgJGxKgpw9e1b333+/EhMT5efnp+eee04bN25UbGysYmNjtXHjRv3zn/9UQECAzp8/r/vvv99yqUxlW7RokSSpe/fu6tChQ6HygQMHKjQ0VJK0ePHiMvUdEBCg2267zWq5yWTSyJEjJUmXLl1SbGxsmfoHrrVs1wmZTKYiy0wmkz5jNggAAAAA2JYEmTVrli5cuKBmzZrpwIEDev3119WjRw81bdpUTZs2VY8ePfTaa69p//79atasmS5cuKC33nrLXrGXW3p6urZv3y5J6tOnT5F1TCaTZbbGhg0b7B6Dl5eX5TgnJ8fu/cO5nLxwucAaNPkZhqGTFy5f54gAAAAAwPHYlAT5+uuvZTKZ9MEHH6hu3bpW6wUHB+uDDz6QYRj66quvbBnSLmJjY5WbmytJCg8Pt1ovr+z06dNKSkqyawybN2+WJHl4eCgsLMxqvQMHDig8PFxms1m+vr5q2rSpRo0apT179tg1HlRt9QK9i50JUi/Q+zpHBAAAAACOx6YkSHx8vHx8fNSpU6cS63bq1Ek+Pj46duyYLUPaxalTpyzHxSVv8pflb2OruLg4vffee5KkAQMGyN/f32rd8+fPKzY2Vt7e3srMzNThw4c1b948tWnTRpMnT7ZbTKjaHrm9frEzQQbcXv86RwQAAAAAjscuu8OUhbUTtespNTXVcmw2m63Wy1+Wv40tLl++rP79+ys9PV01a9bU66+/XmS9Jk2a6I033tChQ4eUkZGhxMREpaWlaf369WrTpo0Mw9C0adM0a9asEsfMzMxUSkpKgRtuLKE1fTSjXyu5mCRXF1OBf2f0a6UQtskFAAAAANuSICEhIUpLS9OOHTtKrPvDDz8oLS2t3Fu6Lly4UCaTqdy3devWlWtce8rOztbgwYO1e/duubu7a8mSJZadY641ZMgQTZw4UWFhYXJ3d5d09dKZnj17atu2bWrbtq0kKSoqSsnJycWO+9prrykgIMByq1+fWQE3ov6319e347tp9J2NdG+rYI2+s5G+Hd9N/ZkFAgAAAACSbEyC9OnTR4ZhaPTo0Tp37pzVemfPntXo0aNlMpl0zz332DKkXfj5+VmO09PTrdbLX5a/TXnk5ORoyJAhWrVqldzc3PTJJ5+oZ8+e5erLy8tL06dPl3R1d5mStvCdNGmSkpOTLbcTJ9gp5EYVUtNH/+zdTG8Paq1/9m7GDBAAAAAAyMfNlsYTJkzQ/PnzdeDAATVv3lxPPvmkevToYVlL4+TJk4qJidH777+vxMREVatWTePHjy/XWIMGDdJ9991X7lgDAgIsx/lnXyQkJKhVq1ZFtklISCiyTVnl5ORo6NChWrZsmVxdXfXxxx/r4YcfLnd/kgps63v06NFi63p6esrT09Om8QAAAAAAqOpsSoLcdNNNWrlypR588EElJSVp+vTplhkK+RmGoWrVqmnVqlW66aabyjWWPU/kmzdvLhcXF+Xm5mr//v1Wt8ndv3+/JCkoKEjVq1cv11h5M0A+++wzSwJkwIAB5Y4dAAAAAACUj80Lo3bt2lV79+7VmDFjFBgYKMMwCtwCAwP15JNPat++fbrzzjvtEbPNzGazZUcba2uFGIah9evXS1K5L1vJycnR4MGDCyRABg4cWL6gr5F/HZbQ0FC79AkAAAAAwI3MppkgeerVq6c5c+Zozpw5iouL09mzZyVJtWvXdtgT9OHDh2vr1q3atGmTdu7cqfbt2xcoj46OtlxmMmzYsDL3nzcDZNmyZXJzcyvTDBDDMGQymayWZ2Zm6sUXX5Qk+fj4qEePHmWODwAAAAAAZ1PmmSDZ2dnFbrMaGhqq9u3bq3379pYESF79nJwc26K1o+HDhysiIkKGYahfv36WxUVzc3MVHR2tUaNGSbq6+GtRSYaoqCjLzjPx8fEFyvLWAPnss88si6CW5RKYLVu2KDIyUh999JFOnjxpuf/KlSuKiYlRly5dtHPnTknSlClTVK1atTI+egAAAAAAnE+ZkyADBw5UYGCgHnvssVK3GTlyZJnbVDQ3NzetXr1aISEhSkhIUGRkpHx8fOTj46NHHnlEKSkpat26tZYsWVLmvrdv366lS5dKkkwmk8aOHaugoCCrt88++6xAe8MwFBMTo2HDhql+/foym82qVauWfHx8FBkZqZ9++kkuLi564YUX9Nxzz9nl+QAAAAAA4EZXpiTIgQMHtGLFCvn7+2vBggWlbvfBBx/I399fn376qY4cOVLmICtKSEiI9u7dqylTpig8PFwmk0nu7u5q06aNZs6cqR07digwMLDM/ebm5lqOr1y5ojNnzhR7u3z5coH2ERERmjlzpvr166ewsDB5e3vr4sWL8vb21i233KJnnnlGv/zyi6ZNm2bzcwAAAAAAgLMwGYZhlLbyCy+8oNdff12TJk0q8wn4lClT9Oqrr+qll17S1KlTyxwo7CclJUUBAQFKTk6Wv79/ZYcDAABucOlZ2Wox5eqC8wdf6SWzh12WpQMAwKK057llmgmydetWmUwm9evXr8wBPfTQQ5KkzZs3l7ktAAAAAACArcqUBDl8+LBcXFzUunXrMg/UqlUrubi46LfffitzWwAAAAAAAFuVKQly8eJFVatWrdjtW60O5OKiatWqKTk5ucxtAQAAAAAAbFWmJIjZbFZqamq5B7t06ZK8vb3L3R4AAAAAAKC8ypQEqV27tq5cuaI//vijzAP98ccfysrKUu3atcvcFgAAAAAAwFZlSoLccccdkqQVK1aUeaDly5dLktq3b1/mtgAAAAAAALYqUxLkvvvuk2EYevPNN/Xnn3+Wut2pU6c0c+ZMmUwm3XfffWUOEgAAAAAAwFZlSoL069dPTZo0UWJionr16lWqy2J+//139e7dW+fPn1fjxo3Vv3//cgcLAAAAAABQXmVKgri4uGjRokXy8PDQgQMH1KpVK40ZM0Zr167V6dOnlZWVpaysLJ0+fVpr167V6NGjdeutt2r//v3y9PTUwoULy7WzDAAAAAAAgK3cytrgjjvu0LJly/Too48qJSVF8+bN07x586zWNwxDvr6++uijj9ShQwebggUAAAAAACivMs0EydO3b1/t2rVL/fv3l8lkkmEYRd5MJpP69++v3bt36y9/+Yu9YwcAAAAAACi1Ms8EydO4cWN99tlnOnv2rDZt2qQDBw4oMTFRklSjRg21bNlS3bt3Z0tcAAAAAADgEMqdBMlTu3ZtDRgwwB6xAAAAAAAAVJhyXQ4DAAAAAABQ1ZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACn4PRJkNTUVEVFRSkiIkK+vr4KCAhQ27ZtNWvWLGVlZZW736ioKJlMphJvv//+e7H9/Pzzzxo6dKjq1asnT09P1alTRw8++KC+/fbbcscGAAAAAIAzcqvsACrTsWPH1K1bN8XHx0uSzGazMjMztWvXLu3atUtLlixRTEyMAgMDyz2Gu7u7qlevbrXczc36SzBv3jw9+eSTys7OliQFBATozJkzWrVqlVatWqWXX35ZUVFR5Y4NAAAAAABn4rQzQbKzs9W3b1/Fx8erTp062rhxo9LS0pSenq6lS5fKz89Pe/bs0dChQ20ap2PHjjp9+rTVW0hISJHtfvjhB/31r39Vdna2HnjgAZ04cUIXL17UuXPnNGbMGEnS1KlTtWzZMpviAwAAAADAWThtEmTRokXat2+fJGn58uWKjIyUJLm4uGjAgAF6//33JUlr1qxRTEzMdY/vueeeU05OjiIiIrRs2TLVq1dPklSjRg2999576tWrlyTpn//8p3Jycq57fAAAAAAAVDVOnQSRpO7du6tDhw6FygcOHKjQ0FBJ0uLFi69rbEePHtW2bdskSRMmTJC7u3uhOpMmTZIkxcfHa8uWLdc1PgAAAAAAqiKnTIKkp6dr+/btkqQ+ffoUWcdkMql3796SpA0bNly32CRp48aNluO8GK7VuXNn+fn5Sbr+8QEAAAAAUBU5ZRIkNjZWubm5kqTw8HCr9fLKTp8+raSkpHKNdeDAAYWHh8tsNsvX11dNmzbVqFGjtGfPHqtt9u/fL0mqXbu2ateuXWQdV1dXNWvWzDIGAAAAAAAonlMmQU6dOmU5rlu3rtV6+cvytymL8+fPKzY2Vt7e3srMzNThw4c1b948tWnTRpMnTy42vuJiy19e3tgAAAAAAHAmTpkESU1NtRybzWar9fKX5W9TGk2aNNEbb7yhQ4cOKSMjQ4mJiUpLS9P69evVpk0bGYahadOmadasWVbjKy62/OUlxZaZmamUlJQCNwAAAAAAnE2VSYIsXLhQJpOp3Ld169Zd13iHDBmiiRMnKiwszLKwqYeHh3r27Klt27apbdu2kqSoqCglJydXaCyvvfaaAgICLLf69etX6HgAAAAAADiiKpMEsae8BUWlq4ukWpO/LH8bW3l5eWn69OmSpEuXLhXagjdvrOJiy19eUmyTJk1ScnKy5XbixInyhg4AAAAAQJXlVtkBlNagQYN03333lbt9QECA5Tg4ONhynJCQoFatWhXZJiEhocg29pB/W96jR48WKMsbK//4RckrLyk2T09PeXp6lidMAAAAAABuGFUmCWLPE/nmzZvLxcVFubm52r9/v9VtcvN2aQkKClL16tXtMnZp5O1Kc/bsWZ07d061atUqVCcnJ0e//fabJKlly5bXLTYAAICyik9Msxy/tfGwhrRvqNCaPpUYEQDAWTnl5TBms1mdOnWSJKtrhRiGofXr10uSevbsafcYduzYYTkODQ0tUHb33Xdbjq3Ft337dsuCqBURHwAAgD0s23VC9/13m+XnD7fFq8eszYrexeW5AIDrzymTIJI0fPhwSdKmTZu0c+fOQuXR0dGWy1SGDRtWpr4Nwyi2PDMzUy+++KIkycfHRz169ChQ3qhRI3Xu3FmSNGvWLF25cqVQH6+//rokqWHDhrrzzjvLFB8AAMD1EHc+Tc8v36vcfP81yjEM5RrSP5fvVfz5NOuNAQCoAE6dBImIiJBhGOrXr59lcdLc3FxFR0dr1KhRkqQ+ffoUSlJIV3d1ydt5Jj4+vkDZli1bFBkZqY8++kgnT5603H/lyhXFxMSoS5culsTLlClTVK1atUL9z5gxQ66urvr11181cOBAy/ofSUlJeuqpp7R27VpJ0htvvCFXV1ebnw8AAAB7W7brhEwmU5FlJpNJnzEbBABwnVWZNUHszc3NTatXr1b37t0VHx+vyMhImc1m5ebmKiMjQ5LUunVrLVmypMx9G4ahmJgYS2LF29tbPj4+Sk5OtszqcHFx0fPPP6/nnnuuyD46duyo9957T08++aRWrFihFStWqFq1akpOTrbMNHn55Zf1yCOPlOfhAwAAVLiTFy5bnSFrGIZOXrh8nSMCADg7p50JIkkhISHau3evpkyZovDwcJlMJrm7u6tNmzaaOXOmduzYocDAwDL3GxERoZkzZ6pfv34KCwuTt7e3Ll68KG9vb91yyy165pln9Msvv2jatGnF9vPEE09o586dGjx4sOrWrav09HTVrl1bDzzwgGJiYhQVFVXORw4AAFDx6gV6FzsTpF6g93WOCADg7ExGSQtY4IaTkpKigIAAJScny9/fv7LDAQAAN6i482nqMWtzgTVB8riYpG/Hd1MIu8QAAOygtOe5Tj0TBAAAABUntKaPZvRrJReT5OpiKvDvjH6tSIAAAK47p10TBAAAABWv/+311Takuj7bdUInL1xWvUBvDbi9PgkQAEClIAkCAACAChVS00f/7N2sssMAAIDLYQAAAAAAgHMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFNw+iRIamqqoqKiFBERIV9fXwUEBKht27aaNWuWsrKyytVnfHy8TCZTqW8jRowo1Mdjjz1WqrbZ2dm2PgUAAAAAADgFt8oOoDIdO3ZM3bp1U3x8vCTJbDYrMzNTu3bt0q5du7RkyRLFxMQoMDCwTP26urrqpptuKrZORkaGkpOTJUlt27a1Ws/Ly0sBAQFWy00mU5liAwAAAADAWTntTJDs7Gz17dtX8fHxqlOnjjZu3Ki0tDSlp6dr6dKl8vPz0549ezR06NAy912/fn2dPn262Nujjz4qSfL29tbgwYOt9jVgwIBi+3F1dS33cwAAAAAAgDNx2iTIokWLtG/fPknS8uXLFRkZKUlycXHRgAED9P7770uS1qxZo5iYGLuOnZGRoSVLlkiS+vXrp2rVqtm1fwAAAAAAUJhTJ0EkqXv37urQoUOh8oEDByo0NFSStHjxYruOvWLFCl24cEGS9MQTT9i1bwAAAAAAUDSnTIKkp6dr+/btkqQ+ffoUWcdkMql3796SpA0bNth1/Pnz50uSmjRpoq5du9q1bwAAAAAAUDSnTILExsYqNzdXkhQeHm61Xl7Z6dOnlZSUZJexjx49qk2bNkmSHn/88RLrx8TEKCwsTF5eXvL391dERITGjRunI0eO2CUeAAAAAACchVMmQU6dOmU5rlu3rtV6+cvyt7HFggULZBiG3NzcNHz48BLrnzx5UkePHpXZbFZ6err279+v//znPwoPD9ecOXPsEhMAAAAAAM7AKZMgqamplmOz2Wy1Xv6y/G3KKycnRwsXLpQk3XvvvQoKCrJa97bbbtPs2bMVHx+vzMxMJSUlKSUlRcuXL9fNN9+srKwsPfXUU1q+fHmJ42ZmZiolJaXADQAAAAAAZ1NlkiALFy6UyWQq923dunWV/RC0bt06JSQkSCp5QdRnn31WTz/9tBo2bGjZBtdsNuuhhx7Szp07LYu2jh8/XoZhFNvXa6+9poCAAMutfv36dng0AAAAAABULVUmCWJPfn5+luP09HSr9fKX5W9TXvPmzZN09TIbawuylkaNGjX0wgsvSJKOHTumPXv2FFt/0qRJSk5OttxOnDhR7rEBAAAAAKiq3Co7gNIaNGiQ7rvvvnK3DwgIsBwHBwdbjhMSEtSqVasi2+TN2ri2TXmcOXNGX331lSTpscces8zuKK/82/oePXpUt912m9W6np6e8vT0tGk8AAAAAACquiqTBLHniXzz5s3l4uKi3Nxc7d+/3+qsjP3790uSgoKCVL16dZvGXLx4sbKzs2UymTRy5Eib+gIAAAAAAGXnlJfDmM1mderUSZKsrhViGIbWr18vSerZs6fNY86fP1+S1L17dzVq1Mjm/nbs2GE5zlsfBAAAAAAAWOeUSRBJlu1pN23apJ07dxYqj46O1tGjRyVJw4YNs2msbdu26dChQ5JKXhBVUokLnSYlJWn69OmSpPr166t169Y2xQcAAAAAgDNw6iRIRESEDMNQv379FBMTI0nKzc1VdHS0Ro0aJUnq06ePevToUah9VFSUZeeZ+Pj4YsfKWxC1evXqeuihh0qM7eOPP9ZDDz2k5cuX6+zZs5b7L1++rFWrVqlDhw6WBM2bb74pFxenfRkBAAAAACi1KrMmiL25ublp9erV6t69u+Lj4xUZGSmz2azc3FxlZGRIklq3bq0lS5bYNE5KSoqio6MlSUOHDi3VuiY5OTlauXKlVq5cKUny8fGRl5eXLl68qJycHElX10h56623NGDAAJviAwAAAADAWThtEkSSQkJCtHfvXs2cOVMrVqxQXFyc3N3d1bJlSw0aNEhjx46Vh4eHTWMsXbrUstVuaS6Fka6uGzJt2jT98MMPio2NVWJiopKTk+Xv76/GjRvrrrvu0pgxY1gLBAAAAACAMjAZJS1AgRtOSkqKAgICLIkVAAAAAACqstKe57KYBAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUSIIAAAAAAACnQBIEAAAAAAA4BZIgAAAAAADAKZAEAQAAAAAAToEkCAAAAAAAcAokQQAAAAAAgFMgCQIAAAAAAJwCSRAAAAAAAOAUnDYJkp6errVr1+rVV1/VQw89pIYNG8pkMslkMikqKspu45w5c0bjx49X06ZN5e3trerVq6tLly6aN2+eDMMosf0ff/yhMWPGKDQ0VF5eXqpVq5Z69eql5cuX2y1GAAAAAACcgVtlB1BZfvzxR91zzz0VOsbu3bvVq1cvJSYmSpJ8fX2Vmpqqbdu2adu2bfr888+1evVqeXh4FNl+zZo16t+/v9LT0yVJ/v7+SkpK0oYNG7RhwwaNGDFC8+fPl8lkqtDHAQAAAADAjcBpZ4JIUmBgoHr06KGJEyfq008/VVBQkN36Tk5O1n333afExEQ1a9ZMP/30k1JTU5WWlqbZs2fL3d1d69ev17hx44psHxcXp0ceeUTp6enq1KmTDh06pOTkZCUnJ2vKlCmSpA8//FBvvvmm3WIGAAAAAOBGZjJKc03GDSgnJ0eurq4F7gsJCdGxY8f08ssv23xJzEsvvaRXX31V3t7eOnDggEJDQwuUv/baa3rhhRfk6uqqgwcPKiwsrED5o48+qo8//lhBQUGKjY1VtWrVCpSPGTNGc+fOlb+/v+Lj4xUYGFjq2FJSUhQQEKDk5GT5+/uX+zECAAAAAOAISnue67QzQa5NgNjb4sWLJUkDBw4slACRpLFjx8rX11c5OTlasmRJgbK0tDTLmh9PPvlkoQSIJE2aNEnS1Rd61apV9g0eAAAAAIAbkNMmQSrSoUOHdPz4cUlSnz59iqzj6+urLl26SJI2bNhQoGzbtm26fPlyse1DQkLUvHnzItsDAAAAAIDCSIJUgP3791uOw8PDrdbLKzt48KBN7Q8cOFCuOAEAAAAAcCYkQSrAqVOnLMd169a1Wi+vLCUlRZcuXSrUPjAwUN7e3iW2zz8eAAAAAAAomtNukVuRUlNTLcdms9lqvfxlqamp8vX1LdC+uLb5y/OPV5TMzExlZmZafk5OTpZ0NfkCAAAAAEBVl3d+W9LeL1UmCbJw4UKNGDGi3O3Xrl2r3r172zGiquO1117T1KlTC91fv379SogGAAAAAICKkZqaqoCAAKvlVSYJUpX4+flZjtPT061uz5Oenl5km7zj/OXFtc/ftiiTJk3SP/7xD8vPubm5SkpKUo0aNWQymYptW9lSUlJUv359nThxgu184ZT4DMDZ8RmAs+MzAGfG+x9lYRiGUlNTFRwcXGy9KpMEGTRokO67775yty8uE2Rv+Z/0hIQEqx/YhIQESZK/v7/lUpj87S9cuKDLly9bXRckr31JL7Knp6c8PT0L3FfUtruOzN/fn198cGp8BuDs+AzA2fEZgDPj/Y/SKs15f5VJghR1Iu+o8u/osn//fstWttfK2wWmRYsWxbZv27Ztse1btmxpU7wAAAAAADgDdoepAGFhYWrQoIEkad26dUXWSUtL09atWyVJPXv2LFDWuXNny+wPa+2PHTum2NjYItsDAAAAAIDCSIJUAJPJpGHDhkmSli5dqvj4+EJ13nnnHV26dEmurq4aMmRIgTIfHx/169dPkjRnzhzLbi75zZgxQ9LV9UAeeOAB+z4AB+Lp6amXX365yswCAuyNzwCcHZ8BODs+A3BmvP9REUxGSfvH3MAuXLignJwcy8+33XabTpw4oYkTJ+q5556z3O/l5VVgzQ5JioqKsuy4EhcXp5CQkALlycnJatasmU6fPq0WLVpo8eLFatOmjbKysjR//nyNGzdOWVlZevLJJ/Xuu+8Wii0uLk4RERFKS0tTly5dNH/+fDVp0kRpaWmaNWuWoqKiZBiGZsyYUSBWAAAAAABQNKdOgoSEhOjYsWMl1hs+fLgWLlxY4L6SkiCStHv3bvXq1UuJiYmSrs7ayMjI0JUrVyRdvYxl9erVVjOba9asUf/+/S27wAQEBOjSpUuWxM2IESM0f/58h9/hBQAAAAAAR8DlMBWoTZs2OnDggP7+97+rSZMmunLlinx8fNS5c2d98MEHWrt2bbFTu+655x7t3btXo0aNUkhIiDIyMhQYGKi7775bn3/+uRYsWEACBAAAAACAUnLqmSAAAAAAAMB5MBMEDik1NVVRUVGKiIiQr6+vAgIC1LZtW82aNUtZWVmVHR5QYRYuXCiTyVTi7ZtvvqnsUIFySU9P19q1a/Xqq6/qoYceUsOGDS3v66ioqFL1cebMGY0fP15NmzaVt7e3qlevri5dumjevHnibztwZLa8/6Oiokr1/fD7779fnwcDlENiYqI+/PBDDR06VC1atJCPj488PT1Vr149PfDAA1q5cmWJfXCeAFu5VXYAwLWOHTumbt26WXbVMZvNyszM1K5du7Rr1y4tWbJEMTExCgwMrNxAgQrk4uKiWrVqWS1nlXRUVT/++KPuueeecre/dr0tX19fpaamatu2bdq2bZs+//xzrV69Wh4eHvYKGbAbW9//kuTu7q7q1atbLXdz47/3cFxBQUHKzs62/Ozl5SV3d3clJCQoISFBX3zxhfr06aPPP/9cZrO5UHvOE2APzASBQ8nOzlbfvn0VHx+vOnXqaOPGjUpLS1N6erqWLl0qPz8/7dmzR0OHDq3sUIEKVb9+fZ0+fdrqrUuXLpUdIlBugYGB6tGjhyZOnKhPP/1UQUFBpWqXnJys++67T4mJiWrWrJl++uknpaamKi0tTbNnz5a7u7vWr1+vcePGVewDAGxQ3vd/no4dOxb7/VDUYv2Ao8jOzla7du307rvv6o8//tDly5d16dIlxcXF6fHHH5ckrV27VmPGjCmyLecJsAdSxXAoixYt0r59+yRJy5cvV4cOHSRd/av4gAEDlJubq8GDB2vNmjWKiYlRjx49KjNcAEAZdenSRUlJSQXue/7550vVdubMmTp9+rS8vb21Zs0ahYaGSpI8PDz09NNPKyUlRS+88ILmzp2rcePGKSwszO7xA7aw5f0P3Ai+/fZbde/evdD9ISEhmjdvntzc3PT+++/r448/1vTp01W/fn1LHc4TYC/MBIFDWbRokSSpe/full9s+Q0cONDyn97Fixdf19gAALZzdXUtd9u83/v5vwvyGzt2rHx9fZWTk6MlS5aUexygotjy/gduBEUlQPLLmw0iSbt27SpQxnkC7IUkCBxGenq6tm/fLknq06dPkXVMJpN69+4tSdqwYcN1iw0AULkOHTqk48ePS7L+HeHr62u5VIzvCACoery8vCzHOTk5lmPOE2BPJEHgMGJjY5WbmytJCg8Pt1ovr+z06dOFppQCN4pz586pTZs28vX1lbe3txo1aqShQ4dq8+bNlR0aUCn2799vOS7Nd8TBgwcrPCagMhw4cEDh4eEym83y9fVV06ZNNWrUKO3Zs6eyQwNslv//OREREZZjzhNgTyRB4DBOnTplOa5bt67VevnL8rcBbiTp6en6+eef5eHhodzcXMXFxWnJkiXq3r27Ro4cWWBldcAZlPU7IiUlRZcuXarwuIDr7fz584qNjZW3t7cyMzN1+PBhzZs3T23atNHkyZMrOzyg3C5evKjXXntN0tX1c5o2bWop4zwB9kQSBA4jNTXVclzUllhFleVvA9wIgoOD9fLLL+vXX39VRkaGkpKSLFNAIyMjJUkffvih/v73v1dypMD1xXcEnF2TJk30xhtv6NChQ8rIyFBiYqLS0tK0fv16tWnTRoZhaNq0aZo1a1ZlhwqUWW5urh599FH9+eef8vLy0uzZswuU8x0AeyIJAgAOpGfPnoqKilKrVq3k6ekp6epCeh07dtT69ev1l7/8RZL07rvv6siRI5UZKgDgOhoyZIgmTpyosLAwubu7S7q6M1LPnj21bds2tW3bVpIUFRWl5OTkygwVKLO//e1v+uqrryRJ77zzjlq1alXJEeFGRhIEDsPPz89ynJ6ebrVe/rL8bYAbnYuLi2bOnCnp6l9Mvvzyy0qOCLh++I4ArPPy8tL06dMlSZcuXVJMTEwlRwSU3oQJEywzP/71r39p5MiRherwHQB7IgkChxEcHGw5TkhIsFovf1n+NoAzaNy4sWrWrClJOnr0aCVHA1w/Zf2O8Pf3l6+vb4XHBTiK/FuG8v2AquK5556zXMI1c+ZMjRs3rsh6nCfAnkiCwGE0b95cLi5X35L5dwG4Vl5ZUFCQqlevfl1iAwBUrvy7AZTmO6JFixYVHhMAoPwmTpyoN998U5L0xhtvaPz48Vbrcp4AeyIJAodhNpvVqVMnSdK6deuKrGMYhtavXy/p6toJgLP5448/dP78eUlSaGhoJUcDXD9hYWFq0KCBJOvfEWlpadq6daskviPgfHbs2GE55vsBjm7ChAmWS3zfeOMNTZw4sdj6nCfAnkiCwKEMHz5ckrRp0ybt3LmzUHl0dLRliuewYcOua2xARTMMo8TyvP8kuLi46L777rseYQEOwWQyWX7vL126VPHx8YXqvPPOO7p06ZJcXV01ZMiQ6xwhUHFK+n7IzMzUiy++KEny8fFRjx49rkdYQLlMmDChwCUwJSVA8nCeAHshCQKHMnz4cEVERMgwDPXr18+ysFdubq6io6M1atQoSVKfPn34gscN59ixY2rXrp3ef/99HT161PKf3tzcXO3YsUN9+vTRypUrJUljxoxR06ZNKzNcoNwuXLig8+fPW265ubmSri5ol//+S5cuFWg3YcIEBQUFKT09Xffee692794tScrKytKcOXP00ksvSZJGjx6tsLCw6/uggFIqz/t/y5YtioyM1EcffaSTJ09a7r9y5YpiYmLUpUsXy0nhlClTVK1atev6mIDSyr8GyFtvvVXsJTDX4jwB9mIySkotA9dZfHy8unfvbvkrn9lsVm5urjIyMiRJrVu3VkxMjAIDAysxSsD+4uPjC0xh9vT0lJ+fn1JTU5WZmWm5f8SIEZo7d67c3NwqI0zAZiEhITp27FiJ9YYPH66FCxcWuG/37t3q1auXEhMTJV1d/T8jI0NXrlyRdHUK9OrVqy1bTAOOpjzv/82bN6t79+6WMm9vb/n4+Cg5Odny3ndxcdHzzz+vadOmVUjcgK2OHz+uhg0bSrr6fq1Vq1ax9SdMmKAJEyYUuI/zBNgD/4OGwwkJCdHevXs1c+ZMrVixQnFxcXJ3d1fLli01aNAgjR07Vh4eHpUdJmB3N910k95++2398MMP+uWXX3Tu3DlduHBBXl5eCg0NVceOHTVy5EjLNbGAM2rTpo0OHDigGTNm6KuvvtKJEyfk4+Oj8PBwDR8+XCNHjrQsngfcKCIiIjRz5kz98MMP2rdvn86fP6+LFy/KbDarRYsW6tKli0aPHq2IiIjKDhWwKm/WU97xmTNniq1/7WxAifME2AczQQAAAAAAgFPgTyUAAAAAAMApkAQBAAAAAABOgSQIAAAAAABwCiRBAAAAAACAUyAJAgAAAAAAnAJJEAAAAAAA4BRIggAAAAAAAKdAEgQAAAAAADgFkiAAAAAAAMApkAQBAAAAAABOgSQIAAAAAABwCiRBAACA04mKipLJZJLJZKrsUAAAwHVEEgQAAAAAADgFkiAAAAAAAMApkAQBAAAAAABOgSQIAABAKVy4cEHz58/XI488ooiICFWvXl1eXl5q2LChBg8erB07dpTYx5YtW9S3b1/VrFlT3t7eatq0qV588UVdunRJCxculMlkUkhISJFt169fr4ceekj16tWTh4eH/P391ahRI/Xs2VMzZ85UUlKSnR8xAAA3HpIgAAAApfCf//xHTzzxhKKjoxUbG2u5//jx4/r000/VsWNH/fe//7Xa/u2331a3bt301VdfKTExUZ6enoqPj9f06dPVrl07Xbx40WrbV155Rb1799bKlSuVkJAgd3d3GYahuLg4bdy4URMnTtTevXvt+XABALghkQQBAAAoheDgYL388svatWuX0tPTlZSUpMuXL+vo0aP629/+Jkn6xz/+oT179hRq+/3332vcuHEyDEN33323Dh06pIsXLyotLU3R0dE6c+aMXnnllSLHPXbsmKZOnWrpPyEhQWlpaUpNTdXFixe1detWPfXUU/Lz86u4Bw8AwA3CrbIDAAAAqApGjx5d6D6TyaTQ0FD9+9//VnZ2tt555x298847mjdvXoF6U6ZMUW5urlq0aKEvv/xSnp6ekiQ3Nzc9/PDDqlGjhu66664ix925c6dyc3MVFhamWbNmFSgLCAhQ586d1blzZzs9SgAAbmzMBAEAALCDe++9V5K0bdu2AvcnJSXp22+/lSRNnDjRkgDJr3v37urSpUuR/VarVk2SlJqaqrS0NDtGDACA8yEJAgAAUEpHjx7VhAkT1KZNG1WrVk2urq4ymUwymUy65557JEknT54s0GbPnj0yDEOS1LVrV6t9d+vWrcj727Vrp5o1a+rPP/9U+/btNXv2bP3222+WPgEAQOlxOQwAAEAprFy5UoMGDVJmZqblPn9/f3l5eclkMikrK0sXLlwoNFvj3LlzluPg4GCr/detW7fI+6tVq6ZPP/1UgwcP1oEDBzR27FhJVy+FufPOO/XII49owIABcnd3t+XhAQDgFJgJAgAAUILExEQ99thjyszM1F133aXNmzcrPT1dycnJOnPmjE6fPq3o6OgS+zGZTOUaPzIyUnFxcVq8eLGGDx+uJk2aKDk5WV9++aUeffRRtW7dWgkJCeXqGwAAZ0ISBAAAoARr1qxRSkqKAgMD9eWXX6pr167y9vYuUOf06dNFtq1Vq5bl+NSpU1bHKCmJ4ePjo0cffVQLFy7U4cOHdfLkSc2YMUNeXl4FZogAAADrSIIAAACU4MSJE5Kkpk2bymw2F1nnm2++KfL+1q1bW2aAbN682eoYxZUVpW7dunruuec0fvx4SdLGjRvL1B4AAGdEEgQAAKAEAQEBkqTDhw8rIyOjUPkvv/yiTz75pMi21atXV/fu3SVJs2bNUlZWVqE6W7Zs0datW4tsn38NkqLkzUhxceG/dQAAlIRvSwAA4NTOnz9f7O3ixYvq2bOnXFxclJSUpCFDhlguXcnKytKyZcvUs2dP+fn5WR1j6tSpMplM2r9/v+6//34dOXJEkpSdna0VK1aoX79+CgwMLLLtjBkz1KdPH3300UcFdp7JzMzUsmXL9Oabb0r63xa9AADAOpIgAADAqdWqVavYW7du3dSkSRNNnDhRkrRixQrVq1dP1apVk6+vrwYMGCBfX1/997//tTpG586d9dZbb0mS1q9fr7CwMAUGBsrX11f9+vVTUFCQpkyZIkny8vIq0DY3N1fr1q3TsGHDVL9+fZnNZtWoUUPe3t4aMGCAkpOT1bx5c0v/AADAOpIgAAAApfD6669r8eLFateunby9vXXlyhU1btxYL7zwgvbs2VPs9reSNG7cOG3evFn33HOPAgMDlZGRoZCQEE2ePFk7duyQYRiSrm6Jm9/o0aM1d+5cDRo0SOH/r507tFUkCqAwfDZZDMmYpwh4gqAFBA6BGI9DY2iAGhBYLAmGBEcFSApAYnAEQ4JiV+3rYN8kM99XwRl1kz937nCYdrv9/UjraDTKer3O5XJJp9P5X58OALXx68+/ExcAgMrMZrPsdrvM5/Nst9uq5wBALbkJAgBQsev1msPhkCSZTCYVrwGA+hJBAAB+wGq1ymazye12y+fzSZK8Xq/s9/uMx+O83+8MBoOUZVntUACoMb/DAAD8gLIsczwekyStVitFUeT5fH4HkV6vl9PplOFwWOVMAKi131UPAABoguVymW63m/P5nPv9nsfjkaIo0u/3M51Os1gs8vX1VfVMAKg1N0EAAACARvAmCAAAANAIIggAAADQCCIIAAAA0AgiCAAAANAIIggAAADQCCIIAAAA0AgiCAAAANAIIggAAADQCCIIAAAA0Ah/AV9NXcnsvVmmAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1100x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot partial autocorrelation\n",
"plt.rc(\"figure\", figsize=(11, 5))\n",
"plot_pacf(data[\"#Passengers\"], method=\"ywm\")\n",
"plt.xlabel(\"Lags\", fontsize=18)\n",
"plt.ylabel(\"Correlation\", fontsize=18)\n",
"plt.xticks(fontsize=18)\n",
"plt.yticks(fontsize=18)\n",
"plt.title(\"Partial Autocorrelation Plot\", fontsize=20)\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c387295-85ed-46bf-93aa-23054c953023",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|