metadata
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
model-index:
- name: ibm/PowerLM-3b
results:
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: ARC
metrics:
- name: accuracy-norm
type: accuracy-norm
value: 60.5
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: BoolQ
metrics:
- name: accuracy
type: accuracy
value: 72
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: Hellaswag
metrics:
- name: accuracy-norm
type: accuracy-norm
value: 74.6
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: OpenBookQA
metrics:
- name: accuracy-norm
type: accuracy-norm
value: 43.6
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: PIQA
metrics:
- name: accuracy-norm
type: accuracy-norm
value: 79.9
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: Winogrande
metrics:
- name: accuracy-norm
type: accuracy-norm
value: 70
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: MMLU (5 shot)
metrics:
- name: accuracy
type: accuracy
value: 49.2
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: GSM8k (5 shot)
metrics:
- name: accuracy
type: accuracy
value: 34.9
verified: false
- task:
type: text-generation
dataset:
type: lm-eval-harness
name: math (4 shot)
metrics:
- name: accuracy
type: accuracy
value: 15.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode-eval
name: humaneval
metrics:
- name: pass@1
type: pass@1
value: 26.8
verified: false
- task:
type: text-generation
dataset:
type: bigcode-eval
name: MBPP
metrics:
- name: pass@1
type: pass@1
value: 33.6
verified: false
Model Summary
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a mix of open-source and proprietary datasets. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning. Paper: https://arxiv.org/abs/2408.13359
Usage
Note: Requires installing HF transformers from source.
Generation
This is a simple example of how to use PowerLM-3b model.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm/PowerLM-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)