|
--- |
|
library_name: peft |
|
license: cc-by-4.0 |
|
datasets: |
|
- iamshnoo/alpaca-cleaned-persian |
|
language: |
|
- fa |
|
- en |
|
metrics: |
|
- accuracy |
|
--- |
|
|
|
This represents the PEFT weights only. The base model is LLaMA 2. Instruction finetuning was done using 4 bit QLoRA on a single A100 GPU with the PEFT config as given below. The dataset used for this instruction finetuning process is a translated version of the cleaned alpaca dataset (translated using NLLB-1.3B). |
|
|
|
Do note that this model might have inferior performance on some language specific tasks compared to full finetuning or a different base model trained with more language specific data. |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Framework versions |
|
|
|
|
|
- PEFT 0.4.0 |