bert-covidqa-3

This model is a fine-tuned version of deepset/bert-base-uncased-squad2 on the covid_qa_deepset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.6653 0.04 5 0.4879
0.2392 0.09 10 0.4815
0.4918 0.13 15 0.4405
0.3634 0.18 20 0.4156
0.6494 0.22 25 0.3953
0.2573 0.26 30 0.3845
0.3645 0.31 35 0.3737
0.5168 0.35 40 0.3656
0.5341 0.39 45 0.3680
0.4362 0.44 50 0.3774
0.5495 0.48 55 0.3692
0.5316 0.53 60 0.3496
0.4068 0.57 65 0.3414
0.4793 0.61 70 0.3470
0.7173 0.66 75 0.3517
0.5335 0.7 80 0.3646
0.7152 0.75 85 0.3848
0.7003 0.79 90 0.3962
0.2466 0.83 95 0.3971
0.415 0.88 100 0.3879
0.4797 0.92 105 0.3767
0.7039 0.96 110 0.3717

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hung200504/bert-covidqa-3

Finetuned
(1)
this model
Finetunes
1 model

Dataset used to train hung200504/bert-covidqa-3