bert-29

This model is a fine-tuned version of deepset/bert-base-cased-squad2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.1544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
10.3108 0.02 5 12.3308
11.3676 0.05 10 12.2829
12.0965 0.07 15 12.2339
10.877 0.09 20 12.1855
11.5463 0.11 25 12.1375
10.4439 0.14 30 12.0898
11.3519 0.16 35 12.0421
11.2558 0.18 40 11.9943
11.0568 0.21 45 11.9462
11.3265 0.23 50 11.8980
9.511 0.25 55 11.8505
10.6662 0.28 60 11.8043
10.2726 0.3 65 11.7576
11.1502 0.32 70 11.7108
11.2245 0.34 75 11.6640
10.3183 0.37 80 11.6173
11.3083 0.39 85 11.5707
10.0481 0.41 90 11.5243
10.6689 0.44 95 11.4780
10.299 0.46 100 11.4322
10.9093 0.48 105 11.3863
10.0403 0.5 110 11.3403
10.3065 0.53 115 11.2948
10.4771 0.55 120 11.2493
9.685 0.57 125 11.2040
9.6081 0.6 130 11.1592
9.9776 0.62 135 11.1145
9.8161 0.64 140 11.0705
10.078 0.67 145 11.0263
10.5549 0.69 150 10.9828
9.9488 0.71 155 10.9384
10.1075 0.73 160 10.8946
9.4674 0.76 165 10.8509
10.077 0.78 170 10.8070
9.5688 0.8 175 10.7636
8.9946 0.83 180 10.7205
10.4224 0.85 185 10.6776
8.6883 0.87 190 10.6344
9.5508 0.89 195 10.5919
9.3088 0.92 200 10.5493
9.3799 0.94 205 10.5072
8.8564 0.96 210 10.4656
8.7775 0.99 215 10.4237
9.4815 1.01 220 10.3824
9.2469 1.03 225 10.3411
8.5056 1.06 230 10.3003
9.8006 1.08 235 10.2595
9.185 1.1 240 10.2181
9.3379 1.12 245 10.1769
8.5696 1.15 250 10.1359
8.4981 1.17 255 10.0960
8.9066 1.19 260 10.0554
9.043 1.22 265 10.0155
7.9105 1.24 270 9.9762
8.8268 1.26 275 9.9372
8.5896 1.28 280 9.8979
8.9422 1.31 285 9.8578
8.2276 1.33 290 9.8188
9.1443 1.35 295 9.7795
8.7467 1.38 300 9.7404
9.1588 1.4 305 9.7015
8.9789 1.42 310 9.6630
7.9135 1.44 315 9.6252
8.9771 1.47 320 9.5876
8.7356 1.49 325 9.5499
8.1398 1.51 330 9.5128
8.4803 1.54 335 9.4754
8.5553 1.56 340 9.4385
8.6194 1.58 345 9.4006
8.1879 1.61 350 9.3633
8.1535 1.63 355 9.3269
8.8795 1.65 360 9.2899
8.4935 1.67 365 9.2536
8.5901 1.7 370 9.2170
8.3013 1.72 375 9.1808
8.1959 1.74 380 9.1448
8.1158 1.77 385 9.1093
7.6286 1.79 390 9.0741
8.2353 1.81 395 9.0397
7.822 1.83 400 9.0050
8.0979 1.86 405 8.9706
8.7221 1.88 410 8.9365
7.8976 1.9 415 8.9018
8.1378 1.93 420 8.8677
7.8131 1.95 425 8.8335
8.2754 1.97 430 8.7997
7.6972 2.0 435 8.7658
7.99 2.02 440 8.7324
7.7428 2.04 445 8.6995
8.0031 2.06 450 8.6671
7.9012 2.09 455 8.6346
7.1693 2.11 460 8.6023
7.8746 2.13 465 8.5700
7.3467 2.16 470 8.5386
7.863 2.18 475 8.5073
7.5655 2.2 480 8.4759
7.8374 2.22 485 8.4446
7.731 2.25 490 8.4132
7.6392 2.27 495 8.3820
7.4547 2.29 500 8.3509
7.4642 2.32 505 8.3204
7.9489 2.34 510 8.2902
7.046 2.36 515 8.2605
7.2211 2.39 520 8.2313
7.2287 2.41 525 8.2026
7.0018 2.43 530 8.1745
7.4544 2.45 535 8.1465
7.8701 2.48 540 8.1183
7.2614 2.5 545 8.0897
6.9922 2.52 550 8.0616
7.1671 2.55 555 8.0342
7.7866 2.57 560 8.0062
6.9815 2.59 565 7.9786
6.9534 2.61 570 7.9514
7.2225 2.64 575 7.9251
7.1113 2.66 580 7.8986
6.7271 2.68 585 7.8728
7.132 2.71 590 7.8475
6.8046 2.73 595 7.8227
7.3063 2.75 600 7.7977
6.8367 2.78 605 7.7724
7.161 2.8 610 7.7475
6.6636 2.82 615 7.7231
7.3229 2.84 620 7.6984
6.6655 2.87 625 7.6743
6.8593 2.89 630 7.6502
6.8838 2.91 635 7.6263
7.0462 2.94 640 7.6031
6.7336 2.96 645 7.5800
6.5167 2.98 650 7.5580
6.6102 3.0 655 7.5359
6.8039 3.03 660 7.5140
7.1668 3.05 665 7.4918
6.6394 3.07 670 7.4694
6.8593 3.1 675 7.4473
6.4022 3.12 680 7.4258
6.9173 3.14 685 7.4050
6.2071 3.17 690 7.3850
6.512 3.19 695 7.3654
6.6548 3.21 700 7.3459
6.7666 3.23 705 7.3263
6.3916 3.26 710 7.3066
6.7645 3.28 715 7.2874
6.5965 3.3 720 7.2679
6.5361 3.33 725 7.2490
6.8693 3.35 730 7.2295
6.3229 3.37 735 7.2106
6.7505 3.39 740 7.1919
6.4917 3.42 745 7.1739
6.5649 3.44 750 7.1566
6.5177 3.46 755 7.1392
6.6282 3.49 760 7.1219
6.5035 3.51 765 7.1051
6.5631 3.53 770 7.0880
6.4593 3.56 775 7.0715
6.5314 3.58 780 7.0554
6.2695 3.6 785 7.0400
6.4792 3.62 790 7.0249
6.7222 3.65 795 7.0091
6.4972 3.67 800 6.9931
6.3063 3.69 805 6.9776
6.1834 3.72 810 6.9630
6.3814 3.74 815 6.9485
6.3444 3.76 820 6.9339
6.3784 3.78 825 6.9195
6.4047 3.81 830 6.9052
6.2368 3.83 835 6.8916
6.1245 3.85 840 6.8784
6.3089 3.88 845 6.8657
6.3674 3.9 850 6.8526
6.4337 3.92 855 6.8393
6.2115 3.94 860 6.8270
6.2734 3.97 865 6.8145
6.2301 3.99 870 6.8023
6.0973 4.01 875 6.7905
6.2143 4.04 880 6.7785
6.4512 4.06 885 6.7665
6.1737 4.08 890 6.7545
6.3221 4.11 895 6.7427
6.2879 4.13 900 6.7313
5.9436 4.15 905 6.7214
6.1258 4.17 910 6.7126
6.2819 4.2 915 6.7031
6.1344 4.22 920 6.6934
6.3769 4.24 925 6.6833
6.3609 4.27 930 6.6731
5.9827 4.29 935 6.6632
6.039 4.31 940 6.6541
6.0012 4.33 945 6.6451
6.0147 4.36 950 6.6362
5.8187 4.38 955 6.6275
5.9193 4.4 960 6.6191
6.28 4.43 965 6.6115
6.2678 4.45 970 6.6027
6.0973 4.47 975 6.5940
6.0822 4.5 980 6.5855
6.1009 4.52 985 6.5775
6.1271 4.54 990 6.5701
6.1592 4.56 995 6.5623
6.1096 4.59 1000 6.5551
5.9785 4.61 1005 6.5481
6.3988 4.63 1010 6.5409
6.0417 4.66 1015 6.5335
6.1195 4.68 1020 6.5261
6.0588 4.7 1025 6.5189
6.1183 4.72 1030 6.5121
5.9251 4.75 1035 6.5057
5.9547 4.77 1040 6.5001
6.0658 4.79 1045 6.4946
6.1259 4.82 1050 6.4889
6.0679 4.84 1055 6.4828
6.0607 4.86 1060 6.4769
5.9526 4.89 1065 6.4715
6.0828 4.91 1070 6.4658
5.9547 4.93 1075 6.4605
6.1024 4.95 1080 6.4551
5.9813 4.98 1085 6.4495
5.8972 5.0 1090 6.4440
5.7935 5.02 1095 6.4390
5.9187 5.05 1100 6.4349
5.9726 5.07 1105 6.4305
6.1756 5.09 1110 6.4254
5.8363 5.11 1115 6.4208
5.9026 5.14 1120 6.4165
6.07 5.16 1125 6.4123
5.963 5.18 1130 6.4077
5.8744 5.21 1135 6.4032
5.7556 5.23 1140 6.3994
5.9779 5.25 1145 6.3952
5.972 5.28 1150 6.3913
5.9615 5.3 1155 6.3873
5.996 5.32 1160 6.3834
5.8424 5.34 1165 6.3795
5.7417 5.37 1170 6.3762
5.9022 5.39 1175 6.3727
6.0184 5.41 1180 6.3693
5.749 5.44 1185 6.3659
5.773 5.46 1190 6.3631
6.0517 5.48 1195 6.3601
5.7407 5.5 1200 6.3573
5.9687 5.53 1205 6.3549
5.9979 5.55 1210 6.3518
6.1084 5.57 1215 6.3482
5.8697 5.6 1220 6.3447
6.0638 5.62 1225 6.3409
6.118 5.64 1230 6.3371
5.7951 5.67 1235 6.3334
5.7953 5.69 1240 6.3302
5.9258 5.71 1245 6.3272
6.0077 5.73 1250 6.3240
5.7704 5.76 1255 6.3209
5.8541 5.78 1260 6.3181
5.9699 5.8 1265 6.3153
5.8741 5.83 1270 6.3126
5.917 5.85 1275 6.3100
5.9787 5.87 1280 6.3070
5.9342 5.89 1285 6.3044
6.0153 5.92 1290 6.3018
5.9102 5.94 1295 6.2993
5.8239 5.96 1300 6.2970
5.8519 5.99 1305 6.2946
5.7885 6.01 1310 6.2925
5.7097 6.03 1315 6.2907
5.8986 6.06 1320 6.2885
5.9841 6.08 1325 6.2864
5.706 6.1 1330 6.2843
5.6936 6.12 1335 6.2827
5.8226 6.15 1340 6.2810
5.8315 6.17 1345 6.2791
5.9115 6.19 1350 6.2774
5.8574 6.22 1355 6.2754
5.6731 6.24 1360 6.2736
5.8267 6.26 1365 6.2719
5.9179 6.28 1370 6.2699
5.8623 6.31 1375 6.2682
5.5588 6.33 1380 6.2668
5.675 6.35 1385 6.2656
5.9247 6.38 1390 6.2642
5.9254 6.4 1395 6.2624
5.6931 6.42 1400 6.2608
5.872 6.44 1405 6.2593
5.9024 6.47 1410 6.2574
5.8604 6.49 1415 6.2557
5.7363 6.51 1420 6.2541
5.7869 6.54 1425 6.2528
6.0195 6.56 1430 6.2511
5.8393 6.58 1435 6.2493
5.7697 6.61 1440 6.2476
5.9471 6.63 1445 6.2460
5.9015 6.65 1450 6.2440
5.9454 6.67 1455 6.2419
5.9572 6.7 1460 6.2399
5.8503 6.72 1465 6.2381
5.8685 6.74 1470 6.2361
5.9132 6.77 1475 6.2344
6.0508 6.79 1480 6.2325
5.7752 6.81 1485 6.2307
5.7491 6.83 1490 6.2292
5.8327 6.86 1495 6.2279
5.8021 6.88 1500 6.2266
5.909 6.9 1505 6.2253
5.7635 6.93 1510 6.2237
5.7958 6.95 1515 6.2225
5.7834 6.97 1520 6.2212
5.8064 7.0 1525 6.2202
5.7643 7.02 1530 6.2191
5.7698 7.04 1535 6.2181
5.947 7.06 1540 6.2168
5.651 7.09 1545 6.2156
5.7821 7.11 1550 6.2144
5.9321 7.13 1555 6.2133
5.7556 7.16 1560 6.2122
5.9326 7.18 1565 6.2109
5.8153 7.2 1570 6.2098
5.8886 7.22 1575 6.2086
5.791 7.25 1580 6.2075
5.6872 7.27 1585 6.2066
5.8454 7.29 1590 6.2054
5.6718 7.32 1595 6.2045
5.94 7.34 1600 6.2034
5.7839 7.36 1605 6.2023
5.7479 7.39 1610 6.2014
5.7667 7.41 1615 6.2004
5.6903 7.43 1620 6.1996
5.7733 7.45 1625 6.1988
5.7689 7.48 1630 6.1978
5.6635 7.5 1635 6.1972
5.6859 7.52 1640 6.1965
5.9551 7.55 1645 6.1955
5.9198 7.57 1650 6.1945
5.8671 7.59 1655 6.1935
5.8787 7.61 1660 6.1926
5.672 7.64 1665 6.1916
5.6778 7.66 1670 6.1908
5.7932 7.68 1675 6.1901
5.7728 7.71 1680 6.1893
5.7485 7.73 1685 6.1885
5.7004 7.75 1690 6.1878
5.8689 7.78 1695 6.1871
5.8178 7.8 1700 6.1862
5.7805 7.82 1705 6.1855
5.6899 7.84 1710 6.1847
5.7139 7.87 1715 6.1841
5.8343 7.89 1720 6.1834
5.617 7.91 1725 6.1828
5.6653 7.94 1730 6.1822
5.7244 7.96 1735 6.1817
5.7212 7.98 1740 6.1811
5.8714 8.0 1745 6.1806
5.7405 8.03 1750 6.1798
5.9066 8.05 1755 6.1792
5.8379 8.07 1760 6.1786
5.8899 8.1 1765 6.1778
5.835 8.12 1770 6.1770
5.691 8.14 1775 6.1764
5.9066 8.17 1780 6.1758
5.7688 8.19 1785 6.1751
5.7538 8.21 1790 6.1746
5.6364 8.23 1795 6.1740
5.8411 8.26 1800 6.1734
5.7645 8.28 1805 6.1729
5.8873 8.3 1810 6.1723
5.5752 8.33 1815 6.1718
5.8784 8.35 1820 6.1712
5.7117 8.37 1825 6.1710
5.8186 8.39 1830 6.1704
5.6907 8.42 1835 6.1699
5.7 8.44 1840 6.1694
5.5417 8.46 1845 6.1692
5.8637 8.49 1850 6.1687
5.7281 8.51 1855 6.1682
5.6528 8.53 1860 6.1677
5.7258 8.56 1865 6.1674
5.7621 8.58 1870 6.1669
5.7232 8.6 1875 6.1666
5.5538 8.62 1880 6.1661
5.7917 8.65 1885 6.1658
5.8579 8.67 1890 6.1654
5.6824 8.69 1895 6.1649
5.7336 8.72 1900 6.1646
5.7791 8.74 1905 6.1641
5.5699 8.76 1910 6.1638
5.7826 8.78 1915 6.1634
5.6718 8.81 1920 6.1632
5.829 8.83 1925 6.1629
5.5786 8.85 1930 6.1625
5.7453 8.88 1935 6.1622
5.6309 8.9 1940 6.1620
5.7146 8.92 1945 6.1617
5.7131 8.94 1950 6.1614
5.7432 8.97 1955 6.1609
5.6304 8.99 1960 6.1607
5.6925 9.01 1965 6.1605
5.7406 9.04 1970 6.1601
5.6347 9.06 1975 6.1600
5.6896 9.08 1980 6.1597
5.6159 9.11 1985 6.1594
5.9093 9.13 1990 6.1593
5.7172 9.15 1995 6.1590
5.7223 9.17 2000 6.1587
5.6943 9.2 2005 6.1586
5.7278 9.22 2010 6.1585
5.6541 9.24 2015 6.1583
5.8852 9.27 2020 6.1580
5.8833 9.29 2025 6.1579
5.6182 9.31 2030 6.1577
5.7419 9.33 2035 6.1575
5.8911 9.36 2040 6.1572
5.6314 9.38 2045 6.1571
5.714 9.4 2050 6.1568
5.7446 9.43 2055 6.1566
5.7887 9.45 2060 6.1565
5.8779 9.47 2065 6.1563
5.7857 9.5 2070 6.1561
5.8314 9.52 2075 6.1560
5.584 9.54 2080 6.1558
5.6878 9.56 2085 6.1556
5.9123 9.59 2090 6.1555
5.7777 9.61 2095 6.1554
5.8798 9.63 2100 6.1554
5.7343 9.66 2105 6.1552
5.6734 9.68 2110 6.1550
5.6331 9.7 2115 6.1550
5.5947 9.72 2120 6.1550
5.8934 9.75 2125 6.1549
5.6424 9.77 2130 6.1548
5.4537 9.79 2135 6.1548
5.799 9.82 2140 6.1547
5.5778 9.84 2145 6.1546
5.6188 9.86 2150 6.1546
5.8389 9.89 2155 6.1545
5.7505 9.91 2160 6.1544
5.7237 9.93 2165 6.1544
5.7 9.95 2170 6.1544
5.7322 9.98 2175 6.1544
5.6562 10.0 2180 6.1544

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hung200504/bert-29

Finetuned
(28)
this model