|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- billsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-billsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: billsum |
|
type: billsum |
|
config: default |
|
split: train[17000:] |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 24.0011 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-billsum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the billsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5675 |
|
- Rouge1: 24.0011 |
|
- Rouge2: 18.8602 |
|
- Rougel: 22.9037 |
|
- Rougelsum: 23.1161 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 195 | 1.6773 | 22.8625 | 17.311 | 21.829 | 22.0089 | 19.0 | |
|
| No log | 2.0 | 390 | 1.6134 | 23.6942 | 18.553 | 22.561 | 22.8895 | 19.0 | |
|
| 1.9532 | 3.0 | 585 | 1.5882 | 23.8253 | 18.7086 | 22.6519 | 22.9745 | 19.0 | |
|
| 1.9532 | 4.0 | 780 | 1.5739 | 24.0178 | 18.8429 | 22.9119 | 23.1471 | 19.0 | |
|
| 1.9532 | 5.0 | 975 | 1.5675 | 24.0011 | 18.8602 | 22.9037 | 23.1161 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|