hotchpotch's picture
Upload trainer.py
2b3a7e0 verified
raw
history blame
16.7 kB
# static-embedding-japanese trainer.py
# base: https://huggingface.co./blog/static-embeddings
# MIT License
import logging
import os
import random
from pathlib import Path
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerModelCardData,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
)
from sentence_transformers.evaluation import NanoBEIREvaluator
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
from transformers import AutoTokenizer
from datasets import Dataset, DatasetDict, load_dataset
EXP = "030"
print("EXP:", EXP)
PROJECT_ROOT = Path(__file__).resolve().parents[1]
print(PROJECT_ROOT)
EN_TARGET_DATASETS = [
# "gooaq", # non-commarical
"msmarco",
"squad",
# "s2orc", # large
"allnli",
# "paq", # large
"trivia_qa",
# "msmarco_10m",
"swim_ir",
# "pubmedqa",
"miracl",
# "mldr", # non-commarical
"mr_tydi",
]
JA_TARGET_DATASETS = [
"hpprc_emb__auto-wiki-nli-triplet",
"hpprc_emb__auto-wiki-qa",
"hpprc_emb__auto-wiki-qa-nemotron",
"hpprc_emb__auto-wiki-qa-pair",
"hpprc_emb__baobab-wiki-retrieval",
# "hpprc_emb__jagovfaqs", JMTEB task のtestに正解が含まれている
"hpprc_emb__janli-triplet",
"hpprc_emb__jaquad",
"hpprc_emb__jqara", # JMTEB task のドメイン
"hpprc_emb__jsnli-triplet",
"hpprc_emb__jsquad",
"hpprc_emb__miracl", # JMTEB task のドメイン
"hpprc_emb__mkqa",
"hpprc_emb__mkqa-triplet",
# "hpprc_emb__mmarco", 文字化け等が含みノイジー
"hpprc_emb__mr-tydi", # JMTEB task のドメイン
"hpprc_emb__nu-mnli-triplet",
"hpprc_emb__nu-snli-triplet",
# "hpprc_emb__paws-x-triplet", JMTEB task のtestに含まれている?
"hpprc_emb__quiz-no-mori",
"hpprc_emb__quiz-works",
"hpprc_emb__snow-triplet",
"hpprc_llmjp-kaken",
"hpprc_llmjp_warp_html",
"hpprc_mqa_ja",
"hpprc_msmarco_ja",
]
AUG_FACTOR_DATASETS = {
"hpprc_emb__miracl": 20,
"hpprc_emb__mr-tydi": 20,
"hpprc_emb__jqara": 10,
"hpprc_emb__baobab-wiki-retrieval": 5,
"hpprc_emb__mkqa": 5,
"hpprc_emb__auto-wiki-qa-nemotron": 2,
"hpprc_msmarco_ja": 2,
}
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
random.seed(12)
def _load_train_eval_datasets_en():
"""
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk.
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training.
"""
en_train_dataset_dir = PROJECT_ROOT / "datasets" / "en_train_dataset"
en_eval_dataset_dir = PROJECT_ROOT / "datasets" / "en_eval_dataset"
try:
train_dataset = DatasetDict.load_from_disk(en_train_dataset_dir)
eval_dataset = DatasetDict.load_from_disk(en_eval_dataset_dir)
return train_dataset, eval_dataset
except FileNotFoundError:
print("Loading gooaq dataset...")
gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
print("Loaded gooaq dataset.")
print("Loading msmarco dataset...")
msmarco_dataset = load_dataset(
"sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
"triplet",
split="train",
)
msmarco_dataset_dict = msmarco_dataset.train_test_split(
test_size=10_000, seed=12
)
msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
print("Loaded msmarco dataset.")
print("Loading squad dataset...")
squad_dataset = load_dataset("sentence-transformers/squad", split="train")
squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
squad_train_dataset: Dataset = squad_dataset_dict["train"]
squad_eval_dataset: Dataset = squad_dataset_dict["test"]
print("Loaded squad dataset.")
print("Loading s2orc dataset...")
s2orc_dataset = load_dataset(
"sentence-transformers/s2orc", "title-abstract-pair", split="train[:100000]"
)
s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
print("Loaded s2orc dataset.")
print("Loading allnli dataset...")
allnli_train_dataset = load_dataset(
"sentence-transformers/all-nli", "triplet", split="train"
)
allnli_eval_dataset = load_dataset(
"sentence-transformers/all-nli", "triplet", split="dev"
)
print("Loaded allnli dataset.")
print("Loading paq dataset...")
paq_dataset = load_dataset("sentence-transformers/paq", split="train")
paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
paq_train_dataset: Dataset = paq_dataset_dict["train"]
paq_eval_dataset: Dataset = paq_dataset_dict["test"]
print("Loaded paq dataset.")
print("Loading trivia_qa dataset...")
trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
print("Loaded trivia_qa dataset.")
print("Loading msmarco_10m dataset...")
msmarco_10m_dataset = load_dataset(
"bclavie/msmarco-10m-triplets", split="train"
)
msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(
test_size=10_000, seed=12
)
msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
print("Loaded msmarco_10m dataset.")
print("Loading swim_ir dataset...")
swim_ir_dataset = load_dataset(
"nthakur/swim-ir-monolingual", "en", split="train"
).select_columns(["query", "text"])
swim_ir_dataset_dict = swim_ir_dataset.train_test_split(
test_size=10_000, seed=12
)
swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
print("Loaded swim_ir dataset.")
# NOTE: 20 negatives
print("Loading pubmedqa dataset...")
pubmedqa_dataset = load_dataset(
"sentence-transformers/pubmedqa", "triplet-20", split="train"
)
pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(
test_size=100, seed=12
)
pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
print("Loaded pubmedqa dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading miracl dataset...")
miracl_dataset = load_dataset(
"sentence-transformers/miracl", "en-triplet-all", split="train"
)
miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
print("Loaded miracl dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading mldr dataset...")
mldr_dataset = load_dataset(
"sentence-transformers/mldr", "en-triplet-all", split="train"
)
mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
print("Loaded mldr dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading mr_tydi dataset...")
mr_tydi_dataset = load_dataset(
"sentence-transformers/mr-tydi", "en-triplet-all", split="train"
)
mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(
test_size=10_000, seed=12
)
mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
print("Loaded mr_tydi dataset.")
train_dataset = DatasetDict(
{
"gooaq": gooaq_train_dataset,
"msmarco": msmarco_train_dataset,
"squad": squad_train_dataset,
"s2orc": s2orc_train_dataset,
"allnli": allnli_train_dataset,
"paq": paq_train_dataset,
"trivia_qa": trivia_qa_train_dataset,
"msmarco_10m": msmarco_10m_train_dataset,
"swim_ir": swim_ir_train_dataset,
"pubmedqa": pubmedqa_train_dataset,
"miracl": miracl_train_dataset,
"mldr": mldr_train_dataset,
"mr_tydi": mr_tydi_train_dataset,
}
)
eval_dataset = DatasetDict(
{
"gooaq": gooaq_eval_dataset,
"msmarco": msmarco_eval_dataset,
"squad": squad_eval_dataset,
"s2orc": s2orc_eval_dataset,
"allnli": allnli_eval_dataset,
"paq": paq_eval_dataset,
"trivia_qa": trivia_qa_eval_dataset,
"msmarco_10m": msmarco_10m_eval_dataset,
"swim_ir": swim_ir_eval_dataset,
"pubmedqa": pubmedqa_eval_dataset,
"miracl": miracl_eval_dataset,
"mldr": mldr_eval_dataset,
"mr_tydi": mr_tydi_eval_dataset,
}
)
train_dataset.save_to_disk(str(en_train_dataset_dir))
eval_dataset.save_to_disk(str(en_eval_dataset_dir))
return train_dataset, eval_dataset
def load_train_eval_datasets_en(target_dataset_names: list[str] = []):
print("Loading train and eval datasets...")
if len(target_dataset_names) == 0:
return DatasetDict(), DatasetDict()
train_dataset, eval_dataset = _load_train_eval_datasets_en()
ds_names = list(train_dataset.keys())
for ds_name in ds_names:
if ds_name not in target_dataset_names:
del train_dataset[ds_name]
del eval_dataset[ds_name]
else:
print(
"target en ds",
ds_name,
len(train_dataset[ds_name]),
len(eval_dataset[ds_name]),
)
return train_dataset, eval_dataset
def load_train_eval_datasets_jp(target_dataset_names: list[str] = []):
print("Loading train and eval datasets...")
jp_train_dataset_dir = PROJECT_ROOT / "datasets" / "jp_train_dataset"
jp_eval_dataset_dir = PROJECT_ROOT / "datasets" / "jp_eval_dataset"
train_dataset_dict = {}
eval_dataset_dict = {}
for ds_name in target_dataset_names:
print("loading jp ds", ds_name)
try:
train_ds = Dataset.load_from_disk(f"{jp_train_dataset_dir}/{ds_name}")
eval_ds = Dataset.load_from_disk(f"{jp_eval_dataset_dir}/{ds_name}")
except FileNotFoundError:
print(f"{ds_name} not found, loading from datasets library...")
ds = load_dataset(
"hotchpotch/sentence_transformer_japanese", ds_name, split="train"
)
ds_size = len(ds)
test_size = min(3000, ds_size // 100)
splitted = ds.train_test_split(test_size=test_size, seed=12)
train_ds = splitted["train"]
eval_ds = splitted["test"]
# save
train_ds.save_to_disk(f"{jp_train_dataset_dir}/{ds_name}")
eval_ds.save_to_disk(f"{jp_eval_dataset_dir}/{ds_name}")
train_dataset_dict[ds_name] = train_ds
eval_dataset_dict[ds_name] = eval_ds
return DatasetDict(train_dataset_dict), DatasetDict(eval_dataset_dict)
def main():
# 1. Load a model to finetune with 2. (Optional) model card data
print("Loading model...")
static_embedding = StaticEmbedding(
AutoTokenizer.from_pretrained("hotchpotch/xlm-roberta-japanese-tokenizer"),
embedding_dim=1024,
)
model = SentenceTransformer(
modules=[static_embedding],
model_card_data=SentenceTransformerModelCardData(
language="ja",
license="mit",
model_name="Static Embeddings with japanese tokenizer finetuned on various datasets",
),
)
# 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
print("Loading datasets...")
train_dataset_en, eval_dataset_en = load_train_eval_datasets_en(EN_TARGET_DATASETS)
train_dataset_jp, eval_dataset_jp = load_train_eval_datasets_jp(JA_TARGET_DATASETS)
# merge
print("Merging datasets...")
train_dataset = DatasetDict({**train_dataset_en, **train_dataset_jp})
eval_dataset = DatasetDict({**eval_dataset_en, **eval_dataset_jp})
for ds_name, aug_factor in AUG_FACTOR_DATASETS.items():
columns = train_dataset[ds_name].column_names
def data_aug(example):
result = {}
for col in columns:
result[col] = example[col] * aug_factor
return result
before_len = len(train_dataset[ds_name])
train_dataset[ds_name] = train_dataset[ds_name].map(
data_aug, batched=True, num_proc=11
)
print("data augmented", ds_name, before_len, len(train_dataset[ds_name]))
for train_ds_name in train_dataset.keys():
print(
"train ds",
train_ds_name,
len(train_dataset[train_ds_name]),
len(eval_dataset[train_ds_name]),
)
# 4. Define a loss function
loss = MultipleNegativesRankingLoss(model)
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
# 5. (Optional) Specify training arguments
run_name = f"static-retrieval-mrl-jp-v1_{EXP}"
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=2,
per_device_train_batch_size=2048 * 3,
# gradient_accumulation_steps=4,
per_device_eval_batch_size=2048,
learning_rate=2e-1,
lr_scheduler_type="cosine",
# optim="adafactor",
warmup_ratio=0.1,
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=200,
save_strategy="steps",
save_steps=200,
save_total_limit=20,
logging_steps=20,
logging_first_step=True,
dataloader_prefetch_factor=4,
dataloader_num_workers=15,
run_name=run_name, # Will be used in W&B if `wandb` is installed
)
# 6. (Optional) Create an evaluator & evaluate the base model
evaluator = NanoBEIREvaluator()
evaluator(model)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=evaluator,
)
trainer.train()
# (Optional) Evaluate the trained model on the evaluator after training
evaluator(model)
# 8. Save the trained model
model.save_pretrained(f"{PROJECT_ROOT}/models/{run_name}/final")
# 9. (Optional) Push it to the Hugging Face Hub
# model.push_to_hub(run_name, private=True)
if __name__ == "__main__":
main()