File size: 16,668 Bytes
2b3a7e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# static-embedding-japanese trainer.py
# base: https://huggingface.co./blog/static-embeddings
# MIT License
import logging
import os
import random
from pathlib import Path
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerModelCardData,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
)
from sentence_transformers.evaluation import NanoBEIREvaluator
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
from transformers import AutoTokenizer
from datasets import Dataset, DatasetDict, load_dataset
EXP = "030"
print("EXP:", EXP)
PROJECT_ROOT = Path(__file__).resolve().parents[1]
print(PROJECT_ROOT)
EN_TARGET_DATASETS = [
# "gooaq", # non-commarical
"msmarco",
"squad",
# "s2orc", # large
"allnli",
# "paq", # large
"trivia_qa",
# "msmarco_10m",
"swim_ir",
# "pubmedqa",
"miracl",
# "mldr", # non-commarical
"mr_tydi",
]
JA_TARGET_DATASETS = [
"hpprc_emb__auto-wiki-nli-triplet",
"hpprc_emb__auto-wiki-qa",
"hpprc_emb__auto-wiki-qa-nemotron",
"hpprc_emb__auto-wiki-qa-pair",
"hpprc_emb__baobab-wiki-retrieval",
# "hpprc_emb__jagovfaqs", JMTEB task のtestに正解が含まれている
"hpprc_emb__janli-triplet",
"hpprc_emb__jaquad",
"hpprc_emb__jqara", # JMTEB task のドメイン
"hpprc_emb__jsnli-triplet",
"hpprc_emb__jsquad",
"hpprc_emb__miracl", # JMTEB task のドメイン
"hpprc_emb__mkqa",
"hpprc_emb__mkqa-triplet",
# "hpprc_emb__mmarco", 文字化け等が含みノイジー
"hpprc_emb__mr-tydi", # JMTEB task のドメイン
"hpprc_emb__nu-mnli-triplet",
"hpprc_emb__nu-snli-triplet",
# "hpprc_emb__paws-x-triplet", JMTEB task のtestに含まれている?
"hpprc_emb__quiz-no-mori",
"hpprc_emb__quiz-works",
"hpprc_emb__snow-triplet",
"hpprc_llmjp-kaken",
"hpprc_llmjp_warp_html",
"hpprc_mqa_ja",
"hpprc_msmarco_ja",
]
AUG_FACTOR_DATASETS = {
"hpprc_emb__miracl": 20,
"hpprc_emb__mr-tydi": 20,
"hpprc_emb__jqara": 10,
"hpprc_emb__baobab-wiki-retrieval": 5,
"hpprc_emb__mkqa": 5,
"hpprc_emb__auto-wiki-qa-nemotron": 2,
"hpprc_msmarco_ja": 2,
}
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
random.seed(12)
def _load_train_eval_datasets_en():
"""
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk.
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training.
"""
en_train_dataset_dir = PROJECT_ROOT / "datasets" / "en_train_dataset"
en_eval_dataset_dir = PROJECT_ROOT / "datasets" / "en_eval_dataset"
try:
train_dataset = DatasetDict.load_from_disk(en_train_dataset_dir)
eval_dataset = DatasetDict.load_from_disk(en_eval_dataset_dir)
return train_dataset, eval_dataset
except FileNotFoundError:
print("Loading gooaq dataset...")
gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
print("Loaded gooaq dataset.")
print("Loading msmarco dataset...")
msmarco_dataset = load_dataset(
"sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
"triplet",
split="train",
)
msmarco_dataset_dict = msmarco_dataset.train_test_split(
test_size=10_000, seed=12
)
msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
print("Loaded msmarco dataset.")
print("Loading squad dataset...")
squad_dataset = load_dataset("sentence-transformers/squad", split="train")
squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
squad_train_dataset: Dataset = squad_dataset_dict["train"]
squad_eval_dataset: Dataset = squad_dataset_dict["test"]
print("Loaded squad dataset.")
print("Loading s2orc dataset...")
s2orc_dataset = load_dataset(
"sentence-transformers/s2orc", "title-abstract-pair", split="train[:100000]"
)
s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
print("Loaded s2orc dataset.")
print("Loading allnli dataset...")
allnli_train_dataset = load_dataset(
"sentence-transformers/all-nli", "triplet", split="train"
)
allnli_eval_dataset = load_dataset(
"sentence-transformers/all-nli", "triplet", split="dev"
)
print("Loaded allnli dataset.")
print("Loading paq dataset...")
paq_dataset = load_dataset("sentence-transformers/paq", split="train")
paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
paq_train_dataset: Dataset = paq_dataset_dict["train"]
paq_eval_dataset: Dataset = paq_dataset_dict["test"]
print("Loaded paq dataset.")
print("Loading trivia_qa dataset...")
trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
print("Loaded trivia_qa dataset.")
print("Loading msmarco_10m dataset...")
msmarco_10m_dataset = load_dataset(
"bclavie/msmarco-10m-triplets", split="train"
)
msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(
test_size=10_000, seed=12
)
msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
print("Loaded msmarco_10m dataset.")
print("Loading swim_ir dataset...")
swim_ir_dataset = load_dataset(
"nthakur/swim-ir-monolingual", "en", split="train"
).select_columns(["query", "text"])
swim_ir_dataset_dict = swim_ir_dataset.train_test_split(
test_size=10_000, seed=12
)
swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
print("Loaded swim_ir dataset.")
# NOTE: 20 negatives
print("Loading pubmedqa dataset...")
pubmedqa_dataset = load_dataset(
"sentence-transformers/pubmedqa", "triplet-20", split="train"
)
pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(
test_size=100, seed=12
)
pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
print("Loaded pubmedqa dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading miracl dataset...")
miracl_dataset = load_dataset(
"sentence-transformers/miracl", "en-triplet-all", split="train"
)
miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
print("Loaded miracl dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading mldr dataset...")
mldr_dataset = load_dataset(
"sentence-transformers/mldr", "en-triplet-all", split="train"
)
mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
print("Loaded mldr dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading mr_tydi dataset...")
mr_tydi_dataset = load_dataset(
"sentence-transformers/mr-tydi", "en-triplet-all", split="train"
)
mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(
test_size=10_000, seed=12
)
mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
print("Loaded mr_tydi dataset.")
train_dataset = DatasetDict(
{
"gooaq": gooaq_train_dataset,
"msmarco": msmarco_train_dataset,
"squad": squad_train_dataset,
"s2orc": s2orc_train_dataset,
"allnli": allnli_train_dataset,
"paq": paq_train_dataset,
"trivia_qa": trivia_qa_train_dataset,
"msmarco_10m": msmarco_10m_train_dataset,
"swim_ir": swim_ir_train_dataset,
"pubmedqa": pubmedqa_train_dataset,
"miracl": miracl_train_dataset,
"mldr": mldr_train_dataset,
"mr_tydi": mr_tydi_train_dataset,
}
)
eval_dataset = DatasetDict(
{
"gooaq": gooaq_eval_dataset,
"msmarco": msmarco_eval_dataset,
"squad": squad_eval_dataset,
"s2orc": s2orc_eval_dataset,
"allnli": allnli_eval_dataset,
"paq": paq_eval_dataset,
"trivia_qa": trivia_qa_eval_dataset,
"msmarco_10m": msmarco_10m_eval_dataset,
"swim_ir": swim_ir_eval_dataset,
"pubmedqa": pubmedqa_eval_dataset,
"miracl": miracl_eval_dataset,
"mldr": mldr_eval_dataset,
"mr_tydi": mr_tydi_eval_dataset,
}
)
train_dataset.save_to_disk(str(en_train_dataset_dir))
eval_dataset.save_to_disk(str(en_eval_dataset_dir))
return train_dataset, eval_dataset
def load_train_eval_datasets_en(target_dataset_names: list[str] = []):
print("Loading train and eval datasets...")
if len(target_dataset_names) == 0:
return DatasetDict(), DatasetDict()
train_dataset, eval_dataset = _load_train_eval_datasets_en()
ds_names = list(train_dataset.keys())
for ds_name in ds_names:
if ds_name not in target_dataset_names:
del train_dataset[ds_name]
del eval_dataset[ds_name]
else:
print(
"target en ds",
ds_name,
len(train_dataset[ds_name]),
len(eval_dataset[ds_name]),
)
return train_dataset, eval_dataset
def load_train_eval_datasets_jp(target_dataset_names: list[str] = []):
print("Loading train and eval datasets...")
jp_train_dataset_dir = PROJECT_ROOT / "datasets" / "jp_train_dataset"
jp_eval_dataset_dir = PROJECT_ROOT / "datasets" / "jp_eval_dataset"
train_dataset_dict = {}
eval_dataset_dict = {}
for ds_name in target_dataset_names:
print("loading jp ds", ds_name)
try:
train_ds = Dataset.load_from_disk(f"{jp_train_dataset_dir}/{ds_name}")
eval_ds = Dataset.load_from_disk(f"{jp_eval_dataset_dir}/{ds_name}")
except FileNotFoundError:
print(f"{ds_name} not found, loading from datasets library...")
ds = load_dataset(
"hotchpotch/sentence_transformer_japanese", ds_name, split="train"
)
ds_size = len(ds)
test_size = min(3000, ds_size // 100)
splitted = ds.train_test_split(test_size=test_size, seed=12)
train_ds = splitted["train"]
eval_ds = splitted["test"]
# save
train_ds.save_to_disk(f"{jp_train_dataset_dir}/{ds_name}")
eval_ds.save_to_disk(f"{jp_eval_dataset_dir}/{ds_name}")
train_dataset_dict[ds_name] = train_ds
eval_dataset_dict[ds_name] = eval_ds
return DatasetDict(train_dataset_dict), DatasetDict(eval_dataset_dict)
def main():
# 1. Load a model to finetune with 2. (Optional) model card data
print("Loading model...")
static_embedding = StaticEmbedding(
AutoTokenizer.from_pretrained("hotchpotch/xlm-roberta-japanese-tokenizer"),
embedding_dim=1024,
)
model = SentenceTransformer(
modules=[static_embedding],
model_card_data=SentenceTransformerModelCardData(
language="ja",
license="mit",
model_name="Static Embeddings with japanese tokenizer finetuned on various datasets",
),
)
# 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
print("Loading datasets...")
train_dataset_en, eval_dataset_en = load_train_eval_datasets_en(EN_TARGET_DATASETS)
train_dataset_jp, eval_dataset_jp = load_train_eval_datasets_jp(JA_TARGET_DATASETS)
# merge
print("Merging datasets...")
train_dataset = DatasetDict({**train_dataset_en, **train_dataset_jp})
eval_dataset = DatasetDict({**eval_dataset_en, **eval_dataset_jp})
for ds_name, aug_factor in AUG_FACTOR_DATASETS.items():
columns = train_dataset[ds_name].column_names
def data_aug(example):
result = {}
for col in columns:
result[col] = example[col] * aug_factor
return result
before_len = len(train_dataset[ds_name])
train_dataset[ds_name] = train_dataset[ds_name].map(
data_aug, batched=True, num_proc=11
)
print("data augmented", ds_name, before_len, len(train_dataset[ds_name]))
for train_ds_name in train_dataset.keys():
print(
"train ds",
train_ds_name,
len(train_dataset[train_ds_name]),
len(eval_dataset[train_ds_name]),
)
# 4. Define a loss function
loss = MultipleNegativesRankingLoss(model)
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
# 5. (Optional) Specify training arguments
run_name = f"static-retrieval-mrl-jp-v1_{EXP}"
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=2,
per_device_train_batch_size=2048 * 3,
# gradient_accumulation_steps=4,
per_device_eval_batch_size=2048,
learning_rate=2e-1,
lr_scheduler_type="cosine",
# optim="adafactor",
warmup_ratio=0.1,
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=200,
save_strategy="steps",
save_steps=200,
save_total_limit=20,
logging_steps=20,
logging_first_step=True,
dataloader_prefetch_factor=4,
dataloader_num_workers=15,
run_name=run_name, # Will be used in W&B if `wandb` is installed
)
# 6. (Optional) Create an evaluator & evaluate the base model
evaluator = NanoBEIREvaluator()
evaluator(model)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=evaluator,
)
trainer.train()
# (Optional) Evaluate the trained model on the evaluator after training
evaluator(model)
# 8. Save the trained model
model.save_pretrained(f"{PROJECT_ROOT}/models/{run_name}/final")
# 9. (Optional) Push it to the Hugging Face Hub
# model.push_to_hub(run_name, private=True)
if __name__ == "__main__":
main()
|