|
--- |
|
license: apache-2.0 |
|
pipeline_tag: text-classification |
|
--- |
|
# ONNX O4 Version of BGE-RERANKER-V2 |
|
|
|
```python |
|
pairs = [['Odio comer manzana.','I reallly like eating apple'],['I reallly like eating apple', 'Realmente me gusta comer manzana.'], ['I reallly like eating apple', 'I hate apples'],['Las manzanas son geniales.','Realmente me gusta comer manzana.']] |
|
|
|
from optimum.onnxruntime import ORTModelForFeatureExtraction,ORTModelForSequenceClassification |
|
from transformers import AutoTokenizer |
|
|
|
model_checkpoint = "onnxO4_bge_reranker_v2_m3" |
|
|
|
ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
|
|
# ONNX Results |
|
import torch |
|
|
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) |
|
scores = ort_model(**inputs, return_dict=True).logits.view(-1, ).float() |
|
print(scores) |
|
|
|
## tensor([ -9.5081, -3.9569, -10.8632, 0.3756]) |
|
|
|
# Original non quantized |
|
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3') |
|
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3') |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) |
|
scores = model(**inputs, return_dict=True).logits.view(-1, ).float() |
|
print(scores) |
|
|
|
## tensor([ -9.4973, -3.9538, -10.8504, 0.3660]) |
|
``` |