p6_severe / README.md
honzapucalek's picture
Model save
96b2d82 verified
|
raw
history blame
2.03 kB
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- p6_severe
metrics:
- wer
model-index:
- name: p6_severe
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: p6_severe
type: p6_severe
config: cs
split: test
args: cs
metrics:
- name: Wer
type: wer
value: 0.4488029997115662
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# p6_severe
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the p6_severe dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7055
- Wer: 0.4488
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.0001 | 95.24 | 1000 | 1.5192 | 0.4586 |
| 0.0 | 190.48 | 2000 | 1.6149 | 0.4479 |
| 0.0 | 285.71 | 3000 | 1.6635 | 0.4505 |
| 0.0 | 380.95 | 4000 | 1.6947 | 0.4485 |
| 0.0 | 476.19 | 5000 | 1.7055 | 0.4488 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1