metadata
license: apache-2.0
base_model: honzapucalek/p6_commonvoice_16_1
tags:
- generated_from_trainer
datasets:
- p6_impaired_v2
metrics:
- wer
model-index:
- name: p6_commonvoice_impaired
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: p6_impaired_v2
type: p6_impaired_v2
config: cs
split: test
args: cs
metrics:
- name: Wer
type: wer
value: 0.41563311220074994
p6_commonvoice_impaired
This model is a fine-tuned version of honzapucalek/p6_commonvoice_16_1 on the p6_impaired_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 1.3476
- Wer: 0.4156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0078 | 14.93 | 1000 | 1.1002 | 0.4759 |
0.0007 | 29.85 | 2000 | 1.2277 | 0.4332 |
0.0012 | 44.78 | 3000 | 1.1811 | 0.4381 |
0.0001 | 59.7 | 4000 | 1.3258 | 0.4200 |
0.0001 | 74.63 | 5000 | 1.3476 | 0.4156 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1