honzapucalek's picture
End of training
321caad verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - honzapucalek/impaired_v3_independent_moderate
metrics:
  - wer
model-index:
  - name: impaired-v3-independent-moderate
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: honzapucalek/impaired_v3_independent_moderate cs
          type: honzapucalek/impaired_v3_independent_moderate
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.19775357385976855

impaired-v3-independent-moderate

This model is a fine-tuned version of openai/whisper-large-v3 on the honzapucalek/impaired_v3_independent_moderate cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6960
  • Wer: 0.1978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0012 22.47 1000 0.5175 0.1984
0.0001 44.94 2000 0.6260 0.1995
0.0 67.42 3000 0.6666 0.1986
0.0 89.89 4000 0.6882 0.1978
0.0 112.36 5000 0.6960 0.1978

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1