honzapucalek's picture
End of training
2189bf8 verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - honzapucalek/impaired_v3_independent_mild
metrics:
  - wer
model-index:
  - name: impaired-v3-independent-mild
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: honzapucalek/impaired_v3_independent_mild cs
          type: honzapucalek/impaired_v3_independent_mild
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.14732650739476677

impaired-v3-independent-mild

This model is a fine-tuned version of openai/whisper-large-v3 on the honzapucalek/impaired_v3_independent_mild cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5302
  • Wer: 0.1473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0001 58.82 1000 0.4383 0.1479
0.0 117.65 2000 0.4865 0.1490
0.0 176.47 3000 0.5102 0.1479
0.0 235.29 4000 0.5247 0.1456
0.0 294.12 5000 0.5302 0.1473

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1