honzapucalek's picture
End of training
e74011f verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - honzapucalek/hc_train_v3_independent_v2
metrics:
  - wer
model-index:
  - name: hc-train-v3-independent-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: honzapucalek/hc_train_v3_independent_v2 cs
          type: honzapucalek/hc_train_v3_independent_v2
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.1169068862960421

hc-train-v3-independent-v2

This model is a fine-tuned version of openai/whisper-large-v3 on the honzapucalek/hc_train_v3_independent_v2 cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3728
  • Wer: 0.1169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0079 13.51 1000 0.2854 0.1256
0.0037 27.03 2000 0.3198 0.1373
0.0002 40.54 3000 0.3459 0.1177
0.0001 54.05 4000 0.3650 0.1168
0.0001 67.57 5000 0.3728 0.1169

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1