stefan-it's picture
readme: add initial version of model card
f2a2b4c
|
raw
history blame
4.61 kB
---
language: en
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-base-historic-multilingual-cased
widget:
- text: On Wednesday , a public dinner was given by the Conservative Burgesses of
Leads , to the Conservative members of the Leeds Town Council , in the Music Hall
, Albion-street , which was very numerously attended .
---
# Fine-tuned Flair Model on TopRes19th English NER Dataset (HIPE-2022)
This Flair model was fine-tuned on the
[TopRes19th English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-topres19th.md)
NER Dataset using hmBERT as backbone LM.
The TopRes19th dataset consists of NE-annotated historical English newspaper articles from 19C.
The following NEs were annotated: `BUILDING`, `LOC` and `STREET`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[8, 4]`
* Learning Rates: `[3e-05, 5e-05]`
And report micro F1-score on development set:
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| bs8-e10-lr3e-05 | [0.8024][1] | [0.7936][2] | [0.8083][3] | [0.8042][4] | [0.8122][5] | 80.41 ± 0.63 |
| bs4-e10-lr3e-05 | [0.791][6] | [0.8143][7] | [0.8017][8] | [0.8065][9] | [0.8065][10] | 80.4 ± 0.77 |
| bs8-e10-lr5e-05 | [0.7974][11] | [0.7983][12] | [0.8092][13] | [0.8094][14] | [0.7828][15] | 79.94 ± 0.98 |
| bs4-e10-lr5e-05 | [0.8058][16] | [0.7966][17] | [0.8033][18] | [0.7889][19] | [0.786][20] | 79.61 ± 0.77 |
[1]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/hmbench/hmbench-topres19th-en-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️