metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_rms_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.848585690515807
smids_5x_deit_tiny_rms_001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4964
- Accuracy: 0.8486
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0328 | 1.0 | 375 | 0.9569 | 0.4459 |
0.8929 | 2.0 | 750 | 0.8978 | 0.5374 |
0.8224 | 3.0 | 1125 | 0.7888 | 0.5574 |
0.8327 | 4.0 | 1500 | 0.8571 | 0.5641 |
0.7266 | 5.0 | 1875 | 1.1729 | 0.5025 |
0.6507 | 6.0 | 2250 | 0.7875 | 0.6456 |
0.6983 | 7.0 | 2625 | 0.6489 | 0.6972 |
0.6312 | 8.0 | 3000 | 0.7326 | 0.6789 |
0.641 | 9.0 | 3375 | 0.5505 | 0.7488 |
0.6354 | 10.0 | 3750 | 0.5766 | 0.7354 |
0.5813 | 11.0 | 4125 | 0.4910 | 0.7920 |
0.6084 | 12.0 | 4500 | 0.5458 | 0.7720 |
0.4944 | 13.0 | 4875 | 0.4657 | 0.8020 |
0.5555 | 14.0 | 5250 | 0.5401 | 0.7621 |
0.526 | 15.0 | 5625 | 0.4958 | 0.7837 |
0.3751 | 16.0 | 6000 | 0.4911 | 0.8037 |
0.4264 | 17.0 | 6375 | 0.5204 | 0.7837 |
0.4312 | 18.0 | 6750 | 0.5011 | 0.7953 |
0.3686 | 19.0 | 7125 | 0.4979 | 0.7970 |
0.3954 | 20.0 | 7500 | 0.4812 | 0.8120 |
0.3782 | 21.0 | 7875 | 0.4706 | 0.8120 |
0.3544 | 22.0 | 8250 | 0.4461 | 0.8353 |
0.3759 | 23.0 | 8625 | 0.4516 | 0.8319 |
0.3473 | 24.0 | 9000 | 0.4332 | 0.8270 |
0.2572 | 25.0 | 9375 | 0.5951 | 0.8203 |
0.3628 | 26.0 | 9750 | 0.5630 | 0.7887 |
0.2737 | 27.0 | 10125 | 0.5304 | 0.8336 |
0.2272 | 28.0 | 10500 | 0.5597 | 0.8319 |
0.2226 | 29.0 | 10875 | 0.5680 | 0.8419 |
0.1778 | 30.0 | 11250 | 0.6295 | 0.8170 |
0.2382 | 31.0 | 11625 | 0.6223 | 0.8270 |
0.1721 | 32.0 | 12000 | 0.6049 | 0.8469 |
0.219 | 33.0 | 12375 | 0.5556 | 0.8569 |
0.0972 | 34.0 | 12750 | 0.6389 | 0.8502 |
0.1781 | 35.0 | 13125 | 0.7873 | 0.8253 |
0.1052 | 36.0 | 13500 | 0.8815 | 0.8236 |
0.1087 | 37.0 | 13875 | 0.7444 | 0.8453 |
0.09 | 38.0 | 14250 | 0.9779 | 0.8253 |
0.0859 | 39.0 | 14625 | 0.8817 | 0.8386 |
0.0521 | 40.0 | 15000 | 0.9849 | 0.8453 |
0.081 | 41.0 | 15375 | 1.0555 | 0.8203 |
0.0225 | 42.0 | 15750 | 1.1081 | 0.8303 |
0.0521 | 43.0 | 16125 | 1.2294 | 0.8253 |
0.0259 | 44.0 | 16500 | 1.3035 | 0.8336 |
0.0403 | 45.0 | 16875 | 1.3613 | 0.8253 |
0.0225 | 46.0 | 17250 | 1.4500 | 0.8103 |
0.0235 | 47.0 | 17625 | 1.5096 | 0.8270 |
0.0002 | 48.0 | 18000 | 1.5022 | 0.8469 |
0.0101 | 49.0 | 18375 | 1.4968 | 0.8469 |
0.0029 | 50.0 | 18750 | 1.4964 | 0.8486 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2