hkivancoral's picture
End of training
efb8d6e
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8666666666666667

smids_5x_deit_tiny_rms_0001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4357
  • Accuracy: 0.8667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3287 1.0 375 0.3863 0.85
0.2455 2.0 750 0.3649 0.8717
0.1213 3.0 1125 0.4642 0.8583
0.1727 4.0 1500 0.5805 0.8617
0.1128 5.0 1875 0.6371 0.8483
0.0689 6.0 2250 0.6331 0.8683
0.0983 7.0 2625 0.6829 0.865
0.1105 8.0 3000 0.6645 0.8617
0.0716 9.0 3375 0.9136 0.8583
0.0639 10.0 3750 0.7869 0.8867
0.0325 11.0 4125 0.8744 0.8733
0.0627 12.0 4500 0.9757 0.8567
0.0409 13.0 4875 0.9654 0.8633
0.0848 14.0 5250 0.8074 0.8667
0.0374 15.0 5625 0.9236 0.8667
0.037 16.0 6000 1.0898 0.8617
0.0497 17.0 6375 1.1236 0.8583
0.0095 18.0 6750 1.0183 0.87
0.0289 19.0 7125 1.0208 0.8783
0.0255 20.0 7500 1.1375 0.8667
0.0016 21.0 7875 1.1251 0.8617
0.0005 22.0 8250 1.0252 0.8717
0.015 23.0 8625 1.1223 0.865
0.0375 24.0 9000 1.0372 0.8733
0.0379 25.0 9375 0.9869 0.8667
0.0001 26.0 9750 1.0331 0.8733
0.0134 27.0 10125 0.9754 0.885
0.0 28.0 10500 1.0742 0.8583
0.0001 29.0 10875 1.0378 0.88
0.0 30.0 11250 1.1203 0.875
0.0077 31.0 11625 1.1471 0.8783
0.0003 32.0 12000 1.1437 0.8783
0.0 33.0 12375 1.1521 0.875
0.0003 34.0 12750 1.2362 0.865
0.0 35.0 13125 1.2535 0.8567
0.0 36.0 13500 1.2428 0.865
0.0002 37.0 13875 1.3504 0.8583
0.0191 38.0 14250 1.2705 0.87
0.0 39.0 14625 1.3466 0.8667
0.0 40.0 15000 1.3575 0.8617
0.0 41.0 15375 1.3681 0.8667
0.0 42.0 15750 1.3681 0.87
0.0 43.0 16125 1.3799 0.865
0.0 44.0 16500 1.3559 0.8667
0.0 45.0 16875 1.3770 0.865
0.0 46.0 17250 1.4044 0.8667
0.0 47.0 17625 1.4188 0.8683
0.0 48.0 18000 1.4286 0.8667
0.0 49.0 18375 1.4343 0.8667
0.0 50.0 18750 1.4357 0.8667

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2