hkivancoral's picture
End of training
d27fdea
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9016666666666666

smids_5x_deit_tiny_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0235
  • Accuracy: 0.9017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3072 1.0 375 0.3497 0.8733
0.1839 2.0 750 0.4255 0.87
0.1528 3.0 1125 0.4557 0.8567
0.1267 4.0 1500 0.3726 0.89
0.1353 5.0 1875 0.4467 0.8917
0.0943 6.0 2250 0.4927 0.91
0.1102 7.0 2625 0.6801 0.8833
0.1057 8.0 3000 0.6555 0.88
0.032 9.0 3375 0.7410 0.8783
0.0843 10.0 3750 0.8478 0.8667
0.0459 11.0 4125 0.6987 0.8917
0.0092 12.0 4500 0.7040 0.8917
0.0349 13.0 4875 0.7908 0.885
0.0111 14.0 5250 0.7260 0.8983
0.0286 15.0 5625 0.7556 0.89
0.0202 16.0 6000 0.7922 0.885
0.0017 17.0 6375 0.7780 0.89
0.0426 18.0 6750 0.7356 0.9033
0.0036 19.0 7125 0.7906 0.88
0.0088 20.0 7500 0.8591 0.8883
0.014 21.0 7875 0.9590 0.8867
0.0 22.0 8250 0.9929 0.8783
0.0363 23.0 8625 0.9559 0.89
0.0156 24.0 9000 0.9344 0.88
0.0345 25.0 9375 0.8898 0.8917
0.0005 26.0 9750 0.9066 0.9
0.0104 27.0 10125 0.9018 0.8983
0.0026 28.0 10500 0.8354 0.89
0.0098 29.0 10875 1.0679 0.885
0.0077 30.0 11250 0.8084 0.8933
0.007 31.0 11625 0.9761 0.8833
0.0079 32.0 12000 0.8798 0.8867
0.0211 33.0 12375 0.9152 0.8967
0.0205 34.0 12750 0.8595 0.8967
0.0 35.0 13125 0.9123 0.8983
0.0 36.0 13500 1.0918 0.8817
0.0001 37.0 13875 0.9598 0.8917
0.0 38.0 14250 0.9005 0.8933
0.0 39.0 14625 0.9817 0.895
0.003 40.0 15000 1.0214 0.8933
0.0 41.0 15375 1.0132 0.895
0.0012 42.0 15750 1.0443 0.8933
0.0 43.0 16125 1.0086 0.895
0.0 44.0 16500 1.0148 0.895
0.0 45.0 16875 1.0171 0.895
0.0 46.0 17250 1.0091 0.8967
0.0 47.0 17625 1.0118 0.8983
0.0 48.0 18000 1.0184 0.9017
0.0 49.0 18375 1.0213 0.9017
0.0 50.0 18750 1.0235 0.9017

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2