hkivancoral's picture
End of training
1b98701
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_5x_deit_tiny_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8603
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2338 1.0 375 0.3930 0.8433
0.1865 2.0 750 0.3259 0.8733
0.1356 3.0 1125 0.2805 0.9033
0.0896 4.0 1500 0.3878 0.88
0.0385 5.0 1875 0.4177 0.8883
0.0314 6.0 2250 0.4802 0.8967
0.0588 7.0 2625 0.6345 0.895
0.0141 8.0 3000 0.7091 0.9033
0.0524 9.0 3375 0.8142 0.8817
0.0425 10.0 3750 0.7582 0.8983
0.0006 11.0 4125 0.7258 0.9
0.0097 12.0 4500 0.7403 0.9
0.0104 13.0 4875 0.9310 0.89
0.0001 14.0 5250 0.7672 0.9
0.0 15.0 5625 0.9240 0.8917
0.0003 16.0 6000 0.8712 0.8983
0.0135 17.0 6375 0.7633 0.9033
0.0335 18.0 6750 1.0118 0.8917
0.0155 19.0 7125 0.8189 0.905
0.0 20.0 7500 0.8004 0.8983
0.0 21.0 7875 1.0772 0.88
0.0255 22.0 8250 0.7694 0.91
0.0019 23.0 8625 0.8682 0.8983
0.0 24.0 9000 0.8775 0.8933
0.0 25.0 9375 0.9259 0.9017
0.0 26.0 9750 0.8433 0.895
0.0119 27.0 10125 0.9223 0.8983
0.0 28.0 10500 0.7870 0.91
0.0 29.0 10875 0.9279 0.895
0.0131 30.0 11250 0.9531 0.8933
0.0 31.0 11625 0.8850 0.8967
0.0 32.0 12000 0.8772 0.8983
0.0 33.0 12375 0.8996 0.8917
0.0 34.0 12750 0.9022 0.8983
0.0 35.0 13125 0.8990 0.8933
0.0 36.0 13500 0.8690 0.9033
0.0 37.0 13875 0.8890 0.9
0.0071 38.0 14250 0.8769 0.9017
0.0 39.0 14625 0.8323 0.9067
0.0 40.0 15000 0.8920 0.9033
0.0 41.0 15375 0.8465 0.9083
0.0 42.0 15750 0.8536 0.905
0.0 43.0 16125 0.8497 0.905
0.0 44.0 16500 0.8492 0.905
0.0 45.0 16875 0.8481 0.9067
0.0 46.0 17250 0.8573 0.9067
0.0029 47.0 17625 0.8575 0.9067
0.0 48.0 18000 0.8605 0.905
0.0 49.0 18375 0.8627 0.905
0.0013 50.0 18750 0.8603 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2